
机器学习
文章平均质量分 65
青花瓷
热爱棋类、游泳、绘画。酷爱甜食、海鲜。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
采用Graphiz绘制树状图碰到的一些问题
本文记录了解决PyCharm中Graphviz相关错误的过程。文章首先展示了PyCharm的错误提示截图,随后介绍了AI对问题的分析。作者通过安装最新版的Graphviz可执行文件并重启系统,成功解决了问题,生成了预期的树状图文件。文章还指出,虽然错误信息提示PyQt5问题,但实际上PyQt5已正确安装,强调要针对具体问题采取解决措施。整个过程通过多张截图直观展示了问题现象和解决步骤,为类似问题提供了参考解决方案。原创 2025-06-25 15:42:49 · 302 阅读 · 0 评论 -
关于香农熵_交叉熵_KL散度的区别关联以及实例
文章摘要: 本文系统介绍了信息论中的三大核心概念:香农熵、交叉熵和KL散度。香农熵用于量化概率分布的不确定性;交叉熵衡量两个概率分布间的差异,是机器学习分类任务的重要损失函数;KL散度(相对熵)则计算使用近似分布时的信息损失。通过数学定义、核心思想说明及具体示例,文章阐释了这些概念的计算方法和实际应用,为理解信息论基础及机器学习相关算法提供了理论支撑。原创 2025-06-25 09:02:50 · 199 阅读 · 0 评论 -
关于朴素贝叶斯的理解
有关朴素贝叶斯的理解和实例。原创 2025-06-24 15:01:00 · 1205 阅读 · 0 评论