一键训练 deeplabv3seg、squeezeseg、voxelnet Docker镜像安装

本文介绍DINK,一种集成了SOTA深度学习算法与传统算法的点云深度学习框架,支持一键运行模拟,纯Tensorflow实现,全流程模块协同与CUDA加速。详细指导了在Ubuntu16.04LTS环境下,如何安装配置NVIDIA Docker,下载并运行DINK镜像,以及启动各种深度学习任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

申明:此博客是  港心时代(原太平洋AI)整理的三大点云深度学习框架,具有以下特点:

1.兼并SOTA深度学习算法与传统算法,一键运行模拟。

2.DINK中人工智能纯Tensorflow实现。

3.全流程模块协同,CUDA加速。

学习之余转载过来大家一起交流学习(如有侵权,联系删除)


建议采用

    * Ubuntu16.04 LTS

    * 8GB以上内存

    * 至少30GB硬盘

    * NVIDIA GTX GeForce GPU GTX1060TI以上

1 NVIDIA Docker安装

   1.1 准备

    * 安装CUDA

    * 系统设置-->软件与更新-->下载选择其他-->在弹框中选择中国-->选择mirrors.aliyun.com-->右下角选择服务器

    * System Settings-->Software &Updates-->Download from-->Other..-->China-mirrors.aliyun.com-->Choose Server-->Close-Reload

  1.2 DOCKER CE安装

    1.2.1 更新

sudo apt-get update

sudo apt-get upgrade

    1.2.2 脚本安装docker

curl -fsSL get.docker.com -o get-docker.sh

sudo sh get-docker.sh --mirror Aliyun

当以下命令显示含有hello world字样时说明DOCKER环境安装

sudo docker run hello-world

    1.3 下载nvidia-docker

wget http://dink.51ai.pro/nvidia-docker_1.0.1-1_amd64.deb

如果上述下载失败,下载以下

wget https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1-1_amd64.deb

安装

sudo dpkg -i nvidia-docker_1.0.1-1_amd64.deb

    1.4 检查nvidia-docker服务是否存在

systemctl list-units --type=service | grep -i nvidia-docker

如果上述操作失败,运行以下

systemctl list-units --type=service | grep -i nvidia-docker-plugin

安装modprobe

sudo apt-get install nvidia-modprobe

 2 下载运行DINK镜像

    2.1 拉取镜像前先设置镜像加速器  

sudo mkdir -p /etc/docker

sudo tee /etc/docker/daemon.json <<-'EOF'
{
  "registry-mirrors": ["https://9pbu6dtx.mirror.aliyuncs.com"]
}
EOF

sudo systemctl daemon-reload

sudo systemctl restart docker

  2.2 从阿里云上拉去docker镜像

sudo docker pull registry.cn-hangzhou.aliyuncs.com/dink_framework/dink0.22:latest

   2.3 验证镜像:

sudo docker images

显示 registry.cn-hangzhou.aliyuncs.com/dink_framework/dink0.22 latest 即拉取成功

  2.4 运行镜像并生成容器用于可视化操作:

下载运行run.sh脚本   

wget http://dinkfile1.51ai.pro/run_dink6.sh

sh run_dink6.sh

  2.4 在镜像中启动DINK:

进入容器后直接运行各个.sh脚本文件:   

./node_deeplabv3seg_cluster.sh #deeplabv3seg_cluster一键启动节点

./node_squeezeseg_cluster.sh #squeezeseg_cluster一键启动节点

./node_voxlelnet.sh #voxlelnet一键启动节点

./dl_deeplabv3seg_train.sh #deeplabv3seg一键训练

./dl_deeplabv3seg_eval.sh #deeplabv3seg一键评估

./dl_squeezeseg_train.sh #squeezeseg一键训练

./dl_squeezeseg_eval.sh #squeezeseg一键评估

./dl_voxelnet_train.sh #voxelnet一键训练

./dl_voxelnet_eval.sh #voxelnet一键评估

./run_clion.sh #一键启动clion

./run_pycharm.sh #一键启动pycharm

(./node_euclidean_cluster.sh #euclidean cluster一键启动节点)

打开新窗口

sudo gnome-terminal

或   

sudo docker container exec -it $(sudo docker ps -q)  /bin/bash

或  

sudo docker ps
sudo docker container exec -it d34d89568a78  /bin/bash

 

### DeepLabV3 和 YOLOv8-Seg 的特点、性能对比及适用场景 #### 模型特点 DeepLabV3 是一种专注于语义分割任务的经典模型,主要通过空间金字塔池化模块 (ASPP) 来捕获多尺度上下文信息,并采用 Atrous 卷积来扩大感受野而不增加计算量[^1]。它适合处理复杂的背景和细节丰富的图像。 YOLOv8-Seg 则是在目标检测基础上扩展到语义分割的任务中,继承了 YOLO 系列快速推理的优势,同时能够提供像素级的预测结果。它的特点是速度快、实时性强,在资源受限环境下表现优异[^2]。 #### 性能对比 在实验设置下,YOLOv8L-seg 达到了 0.516 的验证 mIOU,这一指标高于其他基线模型,表明其在某些特定条件下具有更好的分割能力。然而需要注意的是,这种优势可能依赖于具体的训练配置以及数据分布情况。相比之下,虽然 DeepLabV3 可能在绝对数值上稍逊一筹,但它通常能够在更加复杂的数据集中保持稳定的表现水平。 关于训练数据保留的效果研究显示,当减少多样性较高的样本数量时,所有模型都会经历一定程度上的退步;但对于像 YOLO 这样的轻量化架构而言,影响似乎更为明显一些。这暗示着如果项目允许获取更多样化的高质量图片,则应优先考虑使用传统类型的密集连接结构如 Deeplab 系列产品。 另外值得注意的是,尽管存在不同的标注样式变化,但它们对于最终输出质量几乎没有造成太大干扰——这意味着无论选择哪款解决方案都可以放心忽略此类因素带来的潜在风险。 #### 应用场景 - **DeepLabV3**: 更适用于需要高精度语义理解的应用场合,比如医疗影像中的病灶区域识别或者卫星地图上的土地覆盖分类等领域。由于它可以很好地捕捉细粒度特征并维持全局一致性,因此成为这些任务的理想候选者之一。 - **YOLOv8-Seg**: 非常适合作为移动应用程序的一部分运行,尤其是在那些要求低延迟反馈的情况下,例如增强现实游戏内的物体交互或是无人机导航避障等功能实现过程中都可发挥重要作用。 ```python import torch from ultralytics import YOLO model = YOLO(&#39;yolov8s-seg.pt&#39;) # 加载预训练权重文件 results = model.predict(source=&#39;image.jpg&#39;, conf=0.7, iou=0.5) for result in results: boxes = result.boxes.cpu().numpy() # 获取边界框坐标 masks = result.masks.data.cpu().numpy() # 提取掩码矩阵用于后续操作 ``` 上述代码片段展示了如何加载 YOLOv8-Seg 并执行简单的推断过程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值