多核架构上的并行图划分技术解析
1. 引言
在众多高性能并行算法里,图划分是一项常见的预处理步骤。其主要目标是将图的节点进行划分,让每个分区的节点数量大致相同,同时最小化跨分区边的权重总和。若分区内的节点数量与处理该分区的工作量成正比,且边的权重能衡量通信成本,那么这样的划分就能在实现负载均衡的同时,降低处理器间的通信成本。
图划分在分布式架构中十分有用,它能减少分布式处理单元之间的显式通信量。在共享内存环境下,划分有助于减少内存争用,提高空间局部性。
从形式上看,我们通常这样定义加权无向图:$G = (V, E)$,其中 $w$ 是为每条边 $(u, v) \in E$ 分配权重的函数。对于任意顶点子集 $V_i \subseteq V$,由 $V_i$ 诱导的割集为 $C_i = {(u, v) \in E | u \in V_i, v \in V - V_i}$,割集 $C_i$ 的值(即边割)为 $w_i = \sum_{e \in C_i} w(e)$。子集 $P = V_1, V_2, \cdots, V_k$ 构成 $k$ 路划分的条件是:(1) $\cup_i V_i = V$;(2) $\forall i, j : i \neq j \to V_i \cap V_j = \varnothing$。划分 $P$ 的平衡度为:
$B(V_1, V_2, \cdots, V_k) = \frac{k * \max_{i = 1}^{k} w_i}{\sum_{i = 1}^{k} w_i}$
图划分问题就是,给定 $k$ 和 $G$,找到一个 $k$ 路划分 $P$,使 $P$ 的平衡度和边割(即 $\sum w_i$)最小化。