先看题目:
逆序对
题目描述
猫猫 TOM 和小老鼠 JERRY 最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现在他们喜欢玩统计。
最近,TOM 老猫查阅到一个人类称之为“逆序对”的东西,这东西是这样定义的:对于给定的一段正整数序列,逆序对就是序列中 ai>aja_i>a_jai>aj 且 i<ji<ji<j 的有序对。知道这概念后,他们就比赛谁先算出给定的一段正整数序列中逆序对的数目。注意序列中可能有重复数字。
Update:数据已加强。
输入格式
第一行,一个数 nnn,表示序列中有 nnn个数。
第二行 nnn 个数,表示给定的序列。序列中每个数字不超过 10910^9109。
输出格式
输出序列中逆序对的数目。
样例 #1
样例输入 #1
6
5 4 2 6 3 1
样例输出 #1
11
提示
对于 25%25\%25% 的数据,n≤2500n \leq 2500n≤2500
对于 50%50\%50% 的数据,n≤4×104n \leq 4 \times 10^4n≤4×104。
对于所有数据,n≤5×105n \leq 5 \times 10^5n≤5×105
请使用较快的输入输出
应该不会 O(n2)O(n^2)O(n2) 过 50 万吧 by chen_zhe
---------------------一条正义的分割线---------------------------
根据我两年半单身练习的exp,做题第一眼先看提示,分析算法时间复杂度。
对于所有数据,n≤5×105n \leq 5 \times 10^5n≤5×105
得出代码时间复杂度∈[O(n),O(n2))\in [O(n),O(n^2))∈[O(n),O(n2))
又双分析O(n)的时间复杂度不太可能(for循环遍历a1,…,ana_1,\dots,a_na1,…,an,每个数还要进行>O(1)>O(1)>O(1)的操作)。
得出时间复杂度≈O(logn)\approx O(logn)≈O(logn)
解法一:归并排序
由归并的步骤可联想到使用归并排序时判断,代码如下。
#include<bits/stdc++.h>
#define endl '\n'
using namespace std;
long long n,a[500005],cnt;
void Msort(int l,int r){
if(l==r)return;
int mid=(l+r)/2;
Msort(l,mid);
Msort(mid+1,r);
int *b=new int[r+1],k=l,i=l,j=mid+1;
while(i<=mid&&j<=r){
//TODO
if(a[i]<=a[j])b[k]=a[i],i++,k++;
else{
b[k]=a[j];k++;j++;
cnt+=mid-i+1;
}
}
while(i<=mid)b[k]=a[i],i++,k++;
while(j<=r){
b[k]=a[j],j++,k++;
}
for(int i=l;i<=r;i++){
//TODO
a[i]=b[i];
}
delete[]b;
}
int main(){
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
Msort(1,n);
cout<<cnt;
return 0;
}
代码简单,经分析,时间复杂度为O(nlogn)O(nlogn)O(nlogn)
解法二:树状数组
怎样想到树状数组捏?
考虑根据值来建树状数组 , 初始树状数组为全 0。现在按照序列从左到右将数据的值对应的位置的数加一,代表又有一个数出现。因此,在循环到第 i 项时,前 i−1 项已经加入到树状数组内了 , 树状数组内比 aia_iai大的都会与aia_iai 构成逆序对,因为它们一定出现的更早,所以产生的逆序对数量为i−query(ai)i-query(a_i)i−query(ai)
so code:
#include<bits/stdc++.h>
#define int long long
#define endl '\n'
using namespace std;
int n,handle[1000005];
struct node{
int num,rank;
bool operator<(const node&b)const{
if(num==b.num)return rank<b.rank;
return num<b.num;
}
}a[1000005];
int tree[1000005];
int lowbit(int x){
return x&(-x);
}
void insert(int p,int d){
while(p<=n){
tree[p]+=d;
p+=lowbit(p);
}
}
int query(int p){
int sum=0;
while(p){
sum+=tree[p];
p-=lowbit(p);
}
return sum;
}
signed main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i].num;
a[i].rank=i;
}sort(a+1,a+1+n);
for(int i=1;i<=n;i++){
handle[a[i].rank]=i;
}
int res=0;
for(int i=1;i<=n;i++){
insert(handle[i],1);
res+=i-query(handle[i]);
}
cout<<res<<endl;
return 0;
}