Agentic RAG 的 7 种企业级架构

你好,我是渔夫。

今天,分享一篇长达 35 页的最新Agentic RAG 综述。

论文想解决的核心问题是,当今天大型语言模型(LLMs)在处理动态、实时查询时依赖静态训练数据导致的过时、不准确输出、幻觉等问题。

它从最基本原则和 RAG 范式的演变开始,介绍 Agentic RAG 的 7 种架构。还重点介绍在 5 种应用场景的效果,如医疗保健、金融和教育等行业中的关键应用,且非常详细。

Agentic RAG 原理

首先,来看 Agentic RAG 是如何破局传统的限制,成为新的探索方向呢。

一般来说,普通常 Agent 包括 4 部分组成:

  • LLM(具有定义的角色和任务):作为 Agent 主要推理引擎,帮助用户查询,生成响应,并保持连贯性。
  • 记忆(短长期记忆):在互动过程种上下文和依赖数据,短期记忆会跟踪对话状态,而长期记忆具备长期存储数据能力。
  • 规划(反思与自我评价):可以通过自我反思和自我评判引导 Agent 的迭代推理。
  • 工具(如向量搜索、网络搜索、API 等):仅靠上面三个部分 Agent 还是过于简单,通过工具扩展来提搞 Agent 能力,如调用外部资源,实时获取数据等。

然后,Agentic RAG 带来了新的 4 种机制。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值