玻色弦理论入门
1. 基本对称性
在弦理论中,Polyakov 作用量具有一些重要的对称性,这些对称性对于理解弦的行为至关重要。
- 重新参数化不变性 :当世界面的参数化形式发生变化,即 $\sigma^{\alpha} \to f^{\alpha}(\sigma) = \sigma’^{\alpha}$ 时,满足 $h_{\alpha\beta}(\sigma) = \frac{\partial f^{\gamma}}{\partial\sigma^{\alpha}}\frac{\partial f^{\delta}}{\partial\sigma^{\beta}} h_{\gamma\delta}(\sigma’)$ 以及 $X’^{\mu}(\tau’, \sigma’) = X^{\mu}(\tau, \sigma)$,Polyakov 作用量保持不变。
- Weyl 变换不变性 :世界面度规 $h_{\alpha\beta}$ 进行缩放变换 $h_{\alpha\beta} \to e^{\omega(\sigma,\tau)}h_{\alpha\beta}$,同时 $\delta X^{\mu} = 0$ 时,作用量也不变。由于这种变换是作用量的局部对称性,在世界面上定义的场论的能量 - 动量张量是无迹的,即 $T^a_a = 0$。但在量子化后,Weyl 对称性可能会因共形反常而被破坏。在玻色弦理论中,为了消除这种反常,目标空间的时空维度必须为 $D = 26$。
利用这些局部对称性,可以选择一个规范,使世界面度规的分量形式变得简单。例如,选择规范 $h_{\alpha\beta} = \e