弦暴胀理论:膜暴胀的深入解析
1. 规范归一化复场与势的关系
在相关理论中,局部上对应的规范归一化复场可表示为 $\varphi = (\partial_y\partial_{\bar{y}}K)^{1/2}y$。对于势 $V = C U^{-2} = C e^{\frac{2K}{3}}$,有如下关系:
$\frac{\partial_{\varphi}\partial_{\bar{\varphi}}V}{V} = \frac{1}{\partial_y\partial_{\bar{y}}K}\frac{\partial_y\partial_{\bar{y}}V}{V} = \frac{2}{3}$
这里忽略了 $U$ 中的次主导项以及函数 $C$ 的导数。若暴胀场是复场 $y$ 的一般实分量,此式意味着 $\eta$ 参数约为 $2/3$,这一数值过大,难以维持长时间的慢滚暴胀。
2. $\eta$ 问题的可能解决方案
为解决 $\eta$ 问题,可使确定体积模 $T$ 的超势 $W$ 依赖于 $M_6$ 上 D3 膜的位置 $y_{\alpha}$,从而近乎抵消上述其他效应产生的大 $\eta$ 参数。不过,这通常需要对 $W$ 进行精细调节。
3. 超势 $W$ 对暴胀场的依赖
超势 $W$ 可能通过函数 $A$ 依赖于 D3 膜的位置。理解这种依赖关系有两种方式,下面先介绍一些非微扰超势的背景知识。
在一般的超引力理论中,矢量场的动能项可能有一个依赖于标量场的前置因子。$N = 1$ 超对称要求该前置因子是手征多重态中复标量 $z^I$ 的全纯函数 $f(z)$ 的实部,即: