规范 - 引力对偶与弦宇宙学中的宇宙奇点研究
1. 宇宙奇点与规范 - 引力对偶概述
在宇宙学研究中,奇点是一个关键且棘手的问题。存在着零奇点和类空奇点,在这些奇点附近,超引力理论往往会失效。不过,规范 - 引力对偶为我们提供了一种新的视角来处理这些奇点。
1.1 零奇点与“反弹”场景
对于零奇点,对偶规范理论可以帮助我们穿过这个奇点,从而产生“反弹”场景。然而,目前还无法计算出反弹后时空的详细特征,因为这需要所有先前时间的边界数据,并且其中很大一部分对应于强耦合规范理论。不过,奇点附近的弱耦合有助于我们理解光前时间不会在体解似乎指示的地方结束,而是会无限延续。
1.2 类空奇点与黑洞形成
对于类空奇点,当 (e^{\varPhi}) 保持有限时,时间不会在超引力解变得奇异的地方结束。相反,系统会在这一点之后继续演化,对于一般的初始状态,会导致黑洞的形成。超引力理论会让我们认为所有观察者都会遇到奇点,但规范理论预测,一些观察者会进入黑洞视界,而另一些观察者可以留在视界之外,并进入一个可以应用正常时空概念的区域。
1.3 类空奇点的另一种研究方法
还有一种研究类空奇点的方法,涉及具有不稳定势的反德西特(AdS)宇宙学及其对偶。这种方法中,源不是显式依赖时间的,而是涉及在规范理论中为标量场添加不稳定势。边界理论的标量从某个一般状态开始,沿着这个不稳定势滚落,并在有限时间内达到无限值,时间依赖性由这些标量场的动力学提供。在体描述中,这表现为AdS时空被一个具有不稳定势的五维标量的非零值所变形,当这个标量沿着其势滚落时,反作用会产生一个具有类空奇点的度规。