百度Apollo基础入门(感知与融合)

本文介绍百度Apollo的自动驾驶感知模块,涉及计算机视觉、摄像头与激光雷达图像处理、Apollo感知策略,包括信号灯分类、车道线检测。还探讨了预测技术,如基于车道的预测,使用RNN进行目标车辆轨迹预测,以及融合策略中的卡尔曼滤波应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是整理百度Apollo官方教程
感知模块需要大量计算机视觉技术(计算机看待和理解世界的方式)。

1.计算机视觉

四项任务: 检测、分类、跟踪、语义分割
在这里插入图片描述
以“分类”任务为例概述流程,如下图所示
在这里插入图片描述

1. 1 摄像头图像

计算机看到的图像只是一个二维网格(黑白),下图是将图像分解为二维灰度像素值网格的示例
在这里插入图片描述
彩色图像过程类似,但更复杂一点
在这里插入图片描述

1. 2 激光雷达图像(lidar)

激光雷达传感器创建环境的点云表征,可提供摄像头无法获取的数据(如:距离、高度)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值