reset2021
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于Siamese网络的人脸识别
通过建立基于Siamese网络的人脸识别模型,可以有效改善传统分类模型在小样本情况下的表现,提供更具区分力的特征表示。然而,在实际应用中还需考虑数据配对的合理性、网络结构的选择等多个因素,确保模型能够适应不同场景的需求。此外,Siamese网络与其他深度学习技术(如GANs、Triple Loss等)结合使用,可以进一步提升人脸识别的准确性和稳定性,为未来的相关研究和发展提供了广阔的可能性。原创 2025-02-25 09:29:46 · 329 阅读 · 0 评论 -
基于YOLOv5、FaceNet与KNN的人脸识别系统
【代码】基于YOLOv5、FaceNet与KNN的人脸识别系统。原创 2025-02-24 18:04:04 · 842 阅读 · 0 评论 -
基于YOLOv5的人脸检测实现
以下是基于YOLOv5实现人脸检测的详细步骤及代码实现,包含从数据准备到模型部署的全流程: 一、环境配置。3. 混合精度训练:在训练时添加`--half`参数启用FP16。1. 多线程预处理:使用生产者-消费者模式分离数据加载与推理。4. 模型蒸馏:使用大模型指导小模型训练提升小模型精度。1. 在models/yolo.py中添加HAM模块。2. 批处理推理:累积多帧后批量处理提升GPU利用率。2. 配置文件yolov5s-face.yaml。1. 数据配置文件face.yaml。3. 动态数据增强实现。原创 2025-02-24 17:09:26 · 343 阅读 · 0 评论 -
基于yolov5的人脸检测实现
以下是基于YOLOv5实现人脸检测的详细步骤及代码实现,包含从数据准备到模型部署的全流程: 一、环境配置。1. 在models/yolo.py中添加HAM模块。2. 配置文件yolov5s-face.yaml。2. 数据标注转换(Python实现)1. 导出TorchScript格式。1. 数据配置文件face.yaml。2. TensorRT加速部署。3. TensorRT推理示例。3. 动态数据增强实现。原创 2025-02-19 14:41:56 · 270 阅读 · 0 评论 -
基于机器学习的人脸识别方法探讨
通过卷积神经网络、人脸嵌入、损失函数优化等技术,人脸识别的准确率和效率得到了显著提升。然而,人脸识别仍然面临数据多样性、隐私安全、计算资源等多方面的挑战。未来,随着多模态融合、轻量化模型、隐私保护等技术的发展,人脸识别将在更多领域得到广泛应用,并进一步提升其性能和安全性。机器学习在人脸识别领域的应用是计算机视觉中最成功的案例之一。以下是机器学习在人脸识别中的应用、关键技术、流程及挑战的详细说明。通过对训练数据进行增强(如旋转、缩放、裁剪、添加噪声等),提高模型的泛化能力。4. 机器学习在人脸识别中的挑战。原创 2025-02-19 13:33:58 · 494 阅读 · 0 评论 -
人脸识别综述
人脸识别技术在过去几十年中取得了显著进展,尤其是深度学习技术的引入,极大地提升了识别的准确性和鲁棒性。未来,随着多模态融合、轻量化模型、隐私保护等技术的发展,人脸识别将在更多领域得到广泛应用,并进一步提升其性能和安全性。其核心任务是通过分析人脸图像或视频,提取独特的特征信息,并与数据库中的已知人脸进行比对,从而实现身份验证或识别。以下是人脸识别技术的综述,涵盖其基本概念、关键技术、应用场景、挑战及未来发展方向。① 卷积神经网络(CNN):CNN是当前人脸识别的主流方法,能够自动学习人脸的高层次特征。原创 2025-02-19 11:56:42 · 541 阅读 · 0 评论 -
facenet 人脸模型训练
人脸检测与特征描述是人脸相关项目应用的基础(包括人脸识别,人脸认证以及人脸聚类等)本文以mtcnn与facent算法为基础,讲述怎样训练自己的人脸模型。主题框架采用的是 facenet 源码,依据具体需求,对facnet做了一定的修改1、数据集收集由于目前开源的数据集中,大多数都是欧美人士的,直接用这些数据来训练的模型对亚洲人脸的泛化能力有限制。...原创 2021-07-29 10:57:16 · 6543 阅读 · 0 评论 -
dlib实现人脸特征向量的提取
目前比较常见的都是对人脸进行验证与识别。本文讲述一种基于人脸特征的人脸分类。通过对目标人物的人脸进行特征提取(采用dlib库中的方法),并将提取的原创 2021-07-30 09:48:14 · 3687 阅读 · 15 评论 -
基于facenet的人脸识别
人脸识别流程原创 2021-08-02 13:56:38 · 3562 阅读 · 0 评论