24、气体流动相关理论与计算方法研究

气体流动相关理论与计算方法研究

1. 半拉格朗日近似在气体流动守恒定律中的应用

1.1 理论基础与方程推导

在气体流动的研究中,有如下关键方程:
- ( \sum_{r} k_{r - 1;i;j} = 1/s ) ,这里的求和是对差分格式所有方程中涉及的系数的上标 ( r ) 的所有值进行的。
- 对于内部节点 ( s_{i;j} \in \Omega_{u}^{h} ) 的 ( u_{h}^{k;i;j} ) ,有方程:
[
\begin{align }
&2(c_{1}^{k - 1;i - 1;j}u_{h}^{k - 1;i - 1;j} + c_{3}^{k - 1;i + 1;j}u_{h}^{k - 1;i + 1;j} + c_{4}^{k - 1;i;j - 1}u_{h}^{k - 1;i;j - 1} + c_{6}^{k - 1;i;j + 1}u_{h}^{k - 1;i - 1;j + 1} + (c_{2}^{k - 1;i;j} + c_{5}^{k - 1;i;j})u_{h}^{k - 1;i;j})u_{h}^{k;i;j}\
&= b_{1}^{k - 1;i - 1;j}q_{h}^{k - 1;i - 1;j}(u_{h}^{k - 1;i - 1;j})^2 + a_{1}^{k - 1;i - 1;j}q_{h}^{k;i;j}(u_{h}^{k;i;j})^2 + b_{3}^{k - 1;i + 1;j}q_{h}^{k - 1;i + 1;j}(u_{h}^{k - 1;i + 1;j})^2 + a_{3}^{k - 1;i + 1;j}q_{h}^{k

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值