气体流动相关理论与计算方法研究
1. 半拉格朗日近似在气体流动守恒定律中的应用
1.1 理论基础与方程推导
在气体流动的研究中,有如下关键方程:
- ( \sum_{r} k_{r - 1;i;j} = 1/s ) ,这里的求和是对差分格式所有方程中涉及的系数的上标 ( r ) 的所有值进行的。
- 对于内部节点 ( s_{i;j} \in \Omega_{u}^{h} ) 的 ( u_{h}^{k;i;j} ) ,有方程:
[
\begin{align }
&2(c_{1}^{k - 1;i - 1;j}u_{h}^{k - 1;i - 1;j} + c_{3}^{k - 1;i + 1;j}u_{h}^{k - 1;i + 1;j} + c_{4}^{k - 1;i;j - 1}u_{h}^{k - 1;i;j - 1} + c_{6}^{k - 1;i;j + 1}u_{h}^{k - 1;i - 1;j + 1} + (c_{2}^{k - 1;i;j} + c_{5}^{k - 1;i;j})u_{h}^{k - 1;i;j})u_{h}^{k;i;j}\
&= b_{1}^{k - 1;i - 1;j}q_{h}^{k - 1;i - 1;j}(u_{h}^{k - 1;i - 1;j})^2 + a_{1}^{k - 1;i - 1;j}q_{h}^{k;i;j}(u_{h}^{k;i;j})^2 + b_{3}^{k - 1;i + 1;j}q_{h}^{k - 1;i + 1;j}(u_{h}^{k - 1;i + 1;j})^2 + a_{3}^{k - 1;i + 1;j}q_{h}^{k