12、实时交通应用评估与冬季道路管理的探索

实时交通应用评估与冬季道路管理的探索

实时交通应用评估

在交通领域,数据的有效利用和分析对于提升交通管理效率至关重要。在实时交通应用评估方面,研究人员进行了一系列实验,旨在评估不同场景下的交通应用效果。

在欠采样率实验中,发现随着欠采样率的变化,灵敏度、特异性和精度会发生相应改变。当丢弃率为85%时,能找到一个较好的平衡点,此时灵敏度约为65%,特异性约为82%,精度约为38%。

交通状态估计是一个简单但受欢迎的交通应用。研究人员使用CoCar消息进行该场景的实验。首先创建了一个由四条双车道链路组成的人工道路网络,覆盖约4公里×8公里的区域,同时也将该场景应用于现实地图,如德国杜塞尔多夫附近的部分道路网络。

在实验中,使用数据流分类算法将数据流元素分为四种交通状态:自由、密集、缓慢移动和拥堵。通过交通模拟中根据相应规则计算每个路段的真实情况,并编制混淆矩阵来评估结果,进而计算挖掘准确性。为展示结果的代表性,进行了三次仅改变交通模拟中随机函数种子的运行,结果显示挖掘算法的整体准确性最大变化约为3 - 5%。

实验中使用了一组默认值和默认分类器。默认的路段长度为400米,窗口大小为60秒,CoCar渗透率为10%。概念自适应的Hoeffding选项树与朴素贝叶斯预测策略作为默认分类器,因其在与其他算法的比较中表现最佳。

最初仅使用紧急制动和警告灯公告消息进行队列末端检测,但发现除拥堵状态外,其他交通状态检测效果不佳。于是引入了定期发送的仅包含基本非事件数据(主要是位置、速度和加速度)的消息,这提高了其他类别的准确性,但对于密集类仍效果不佳。原因可能是各类别示例数量不平衡,因此在交通模拟中使用不同道路的多个交通流量来创建分布在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值