
数学基础
Rocky Ding*
全网同名Rocky Ding,AIGCmagic社区创始人,自媒体WeThinkIn主理人,AIGC算法专家,持续分享AI行业前沿资讯、干货经验以及深度思考,欢迎社招/校招/实习面试咨询。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
数学基础_一副扑克54张,等分成三份,两张王在同一个人手中的概率是多大
解题思路:总的可能分法:大小王在同一份的分法:所以答案:原创 2020-09-08 10:27:30 · 2682 阅读 · 0 评论 -
数学基础_已知中国人的血型分布约为A型:30%,B型:20%,O型:40%,AB型:10%,则任选一批中国人作为用户调研对象,希望他们中至少有一个是B型血的可能性不低于90%,那么最少需要选多少人?
已知一个人是B型血的可能性是0.2,那么这个人不是B型血的可能性就是0.8。那么求至少有一个B型血的可能性如下计算所示:原创 2020-09-08 09:45:54 · 2146 阅读 · 0 评论 -
数学基础_假设一对夫妇一胎生一个孩子,男孩女孩各一半,他们需要连续生几个孩子,才能至少有一个儿子和一个女儿,写一个运行10万次的模拟仿真代码来求解
我们使用C++进行求解:class Solution{public: int birth_trials_needed_to_get_boy_and_girl() { int numbers = 100000; int boys = 0; int girls = 0; int sum = 0; while(numbers) { int temp = 0; while(boys < 1 && girls < 1) { sra.原创 2020-09-05 23:33:13 · 561 阅读 · 0 评论 -
深度学习_数学基础_笛卡尔积
笛卡尔积是针对两个集合来说的,给出两个集合X和Y,他们之间的笛卡尔积代表两个集合的所有成员的可能有序对。我们举个例子:假设集合X={a, b, c},集合B={1,2,3,4},那么两个集合的笛卡尔积为:(a,1),(a,2),(a,3),(a,4),(b,1),(b,2),(b,3),(b,4),(c,1),(c,2),(c,3),(c,4)。...原创 2020-07-16 23:34:13 · 1785 阅读 · 0 评论 -
深度学习_数学基础_NP相关问题
P类问题、NP类问题、NPC问题、NP难问题P类问题:能在多项式时间内可解的问题。NP类问题:在多项式时间内“可验证”的问题。也就是说,不能判定这个问题到底有没有解,而是猜测出一个解来在多项式时间内证明这个解是否正确。即该问题的猜测过程是不确定的,而对其某一个解的验证则能够在多项式时间内完成。P类问题属于NP类问题,但NP类问题不一定属于P类问题。NPC问题:存在这样一个NP问题,所有的N...原创 2020-02-29 14:25:27 · 1322 阅读 · 0 评论 -
深度学习_数学基础_概率论power(未完待续)
概率及其相关知识在机器学习与深度学习中的重要作用:先上定义哈哈哈**事件的概率:**衡量该事件发生的可能性的度量。(虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律)深度学习需要处理不确定量和随机量。不确定性和随机性可能来自多个方面,而概率知识可以对不确定性进行量化,这就为后面的模型进行优化提供了数学基础!由于深度学习算法...原创 2019-11-17 00:56:33 · 484 阅读 · 0 评论 -
数学基础_若要使骰子(六个面)的每个数都出现至少一次,那么平均需要掷多少次骰子?
记每个数字都出现(首次出现)的总数为X,题目中的意思也就是求E(X).由于X的分布相当复杂,我们就绕开它,考虑将X分解。令X1 = 1,它表示出现第一个数字需要掷的次数。注意:这里第一个数字是指第一个出现的数字,并不是指哪一个固定的数字,所以才有X1 = 1。然后以X2表示为了掷出第二个数字(即只要不是第一个出现的那个数字)再需要掷的次数。同样地,以X3表示为了掷出第三个数字(即除了前面两个已...原创 2019-12-01 15:07:53 · 6437 阅读 · 2 评论 -
数学基础_设随机变量X1,X2,…Xn相互独立,且都服从(0,θ)上的均匀分布。求U=max{X1,X2,…Xn}数学期望
由题意得:随机变量相互独立且服从均匀分布。均匀分布的概率密度为:其分布函数为:下面是这道题的具体步骤:原创 2019-11-24 13:45:43 · 22044 阅读 · 0 评论