P8343 [COCI 2021/2022 #6] Zemljište
题目描述
有一块地,大小为 r × s r \times s r×s, M a t e j \rm Matej Matej 想买下它。这块地每个 1 × 1 1\times1 1×1 的正方形都有不同的价格。
设一片非空子矩阵价格总和为 m m m,则这片子矩阵的权值为 ∣ m − a ∣ + ∣ m − b ∣ |m-a|+|m-b| ∣m−a∣+∣m−b∣,您需要找到最小权值的子矩阵。
您只需要输出最小权值即可。
输入格式
第一行包含四个正整数 r r r, s s s , a a a 和 b b b 。
下面 r r r 行,第 i i i 行,有 s s s 个正整数,第 j j j 个数表示 c i , j c_{i,j} ci,j,表示价格。
输出格式
一行一个整数 v v v,表示最小非空子矩阵的权值。
输入输出样例 #1
输入 #1
2 2 10 10
1 3
4 1
输出 #1
2
输入输出样例 #2
输入 #2
3 2 3 4
1 9
1 1
8 1
输出 #2
3
输入输出样例 #3
输入 #3
3 4 5 3
1 1 1 1
9 6 7 6
8 1 9 7
输出 #3
2
说明/提示
样例解释 2
如图,总价格是 1 + 1 = 2 1 + 1 = 2 1+1=2,这块地的权值是 ∣ 3 − 2 ∣ + ∣ 4 − 2 ∣ = 3 |3−2| + |4−2| =3 ∣3−2∣+∣4−2∣=3。
数据范围:
对于 14 % 14\% 14% 的数据: 1 ≤ r , s ≤ 20 1\le r,s\le20 1≤r,s≤20
对于 28 % 28\% 28% 的数据: 1 ≤ r , s ≤ 100 1\le r,s\le100 1≤r,s≤100
对于 100 % 100\% 100% 的数据: 1 ≤ r , s ≤ 500 1\le r,s\le500 1≤r,s≤500, 1 ≤ a , b , c i , j ≤ 1 0 9 1\le a,b,c_{i,j}\le10^9 1≤a,b,ci,j≤109
本题分值与 COCI 2021-2022#6 分值相同,满分 70 70 70 分
C++实现
#include<bits/stdc++.h>
using namespace std;
long long n,m,a,b,mp[510][510],sum[510][510],ans=2e9;//不开longlong见祖宗
int main(){
cin>>n>>m;
cin>>a>>b;
if(a>b)swap(a,b);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>mp[i][j];
ans=min(ans,abs(mp[i][j]-a)+abs(mp[i][j]-b));
sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+mp[i][j];//前缀和
}
}
for(int a1=1;a1<=n;a1++){
for(int a2=1;a2<=m;a2++){
for(int x=a1;x<=n;x++){
for(int y=a2;y<=m;y++){
long long k=sum[x][y]+sum[a1-1][a2-1]-sum[x][a2-1]-sum[a1-1][y];
if(k>=a&&k<=b){
cout<<b-a;
return 0;
}//剪枝
if((abs(k-a)+abs(k-b))<ans)ans=(abs(k-a)+abs(k-b));
if(k>a&&k>b)break;//剪枝
}
}
}
}
cout<<ans;
return 0;
}
后续
接下来我会不断用C++来实现信奥比赛中的算法题、GESP考级编程题实现、白名单赛事考题实现,记录日常的编程生活、比赛心得,感兴趣的请关注,我后续将继续分享相关内容