P8403 [CCC 2022 J4] Good Groups
题目背景
请注意:这道题是 CCO 2022 S2 Good Groups 的弱化版
管理备注:似乎没有弱化
题目描述
一个班级会被分成 g g g 个组,每个组有三个人,这种分组方式可能会违反两种规定:
- 一些学生必须在同一小组;
- 一些学生必须不在同一小组。
现在校长找到了你,问学生一共违反了多少个规定。
输入格式
第一行一个整数 x x x。紧接着 x x x 行,每行两个学生名字 n a m e 1 , n a m e 2 name_1,name_2 name1,name2 ,表示这两个学生必须被分配到同一个小组。
接下来一个整数 y y y。紧接着 y y y 行,每行两个学生名字 n a m e 1 , n a m e 2 name_1,name_2 name1,name2 ,表示这两个学生必须不在同一个小组。
接下来一个整数 g g g。紧接着 g g g 行,每行三个学生名字 n a m e 1 , n a m e 2 , n a m e 3 name_1,name_2,name_3 name1,name2,name3,表示这三个学生现在被分在一个小组。
输出格式
输出一个整数,表示学生一共违反了多少个规定。
输入输出样例 #1
输入 #1
1
ELODIE CHI
0
2
DWAYNE BEN ANJALI
CHI FRANCOIS ELODIE
输出 #1
0
输入输出样例 #2
输入 #2
3
A B
G L
J K
2
D F
D G
4
A C G
B D F
E H I
J K L
输出 #2
3
说明/提示
样例2解释:
- A \rm A A 和 B \rm B B 必须在同一组,这一点违反了。
- G \rm G G 和 L \rm L L 必须在同一组,这一点违反了。
- J \rm J J 和 K \rm K K 必须在同一组,这一点没有违反。
- D \rm D D 和 F \rm F F 必须不在同一组,这一点违反了。
- D \rm D D 和 G \rm G G 必须不在同一组,这一点没有被违反。
以上 5 5 5 条共违反 3 3 3 条,所以输出 3 3 3。
对于 25 % 25\% 25% 的数据: 1 ≤ g ≤ 50 , 1 ≤ x ≤ 50 , y = 0 1\le g\le 50 , 1\le x\le 50,y=0 1≤g≤50,1≤x≤50,y=0
对于另外 60 % 60\% 60% 的数据: 1 ≤ g ≤ 50 , 1 ≤ x ≤ 50 , 1 ≤ y ≤ 50 1\le g\le 50 , 1\le x\le 50,1\le y\le 50 1≤g≤50,1≤x≤50,1≤y≤50
对于 100 % 100\% 100% 的数据: 1 ≤ g ≤ 1 0 5 , 1 ≤ x ≤ 1 0 5 , 1 ≤ y ≤ 1 0 5 1\le g\le 10^5,1\le x\le 10^5,1\le y\le 10^5 1≤g≤105,1≤x≤105,1≤y≤105
C++实现
#include <iostream>
using namespace std;
const int N=1e5+5;
int x,y,g,ans;
string n1[N][2],n2[N][2],a,b,c;
template<class T=int>
class set{
public:
set(int n=1e5){f=new T[l=n+5]; clear();}
~set(){delete[] f;}
T find(T x){return f[x]==x ? x : f[x]=find(f[x]);}
void merge(T x,T y){f[find(x)]=find(y);}
void clear(){for(int i=0; i<l; i++) f[i]=i;}
private:
T *f;
int l;
};
set<int> s(1e7); // 并查集(构造函数传范围)
int hs(string s){
unsigned int res=0;
for(int i=0; i<s.size(); i++)
res=res*63+s[i]; // BKDR 哈希
return res%(int)1e7;
// res需要作为数组下标,为了防止哈希冲突,将数组开到了 1e7
}
int main(){
scanf("%d",&x); // 约束 1 个数
for(int i=1; i<=x; i++) cin >> n1[i][0] >> n1[i][1];
scanf("%d",&y); // 约束 2 个数
for(int i=1; i<=y; i++) cin >> n2[i][0] >> n2[i][1];
scanf("%d",&g); // 组数
for(int i=1; i<=g; i++){
cin >> a >> b >> c; // a,b,c 在同一组
s.merge(hs(a),hs(b)); // 将其合并
s.merge(hs(a),hs(c));
}
for(int i=1; i<=x; i++) // 判断是否违反约束 1
if(s.find(hs(n1[i][0]))!=s.find(hs(n1[i][1]))) ans++;
for(int i=1; i<=y; i++) // 同上,约束 2
if(s.find(hs(n2[i][0]))==s.find(hs(n2[i][1]))) ans++;
printf("%d\n",ans);
return 0;
}
后续
接下来我会不断用C++来实现信奥比赛中的算法题、GESP考级编程题实现、白名单赛事考题实现,记录日常的编程生活、比赛心得,感兴趣的请关注,我后续将继续分享相关内容