P10374 [AHOI2024 初中组 / 科大国创杯初中组 2024] 操作
题目背景
本题的数据不是官方数据。
本题征集(能够上传到这里的)官方数据。
(没法上传到这里的)官方数据:https://www.luogu.com.cn/training/499869
本题民间数据下载:http://8.136.99.126/blog/3/67f0c2307aadac7b413b837b
题目描述
小可可有一个数组 { a n } \{a_n\} {an}(初始值为 { a n } = { 0 , 0 , … , 0 } \{a_n\}=\{0,0,\ldots,0\} {an}={0,0,…,0})和从左到右的 m m m 个机器,其中第 i i i 个机器有类别 o i ∈ { 1 , 2 } o_i \in \{1,2\} oi∈{1,2} 和参数 x i , y i x_i,y_i xi,yi。第 i i i 个机器执行的操作如下:
- 若 o i = 1 o_i=1 oi=1,则将 a ( x i ) a_{(x_i)} a(xi) 加上 y i y_i yi,此时保证 1 ≤ x i ≤ n 1 \le x_i \le n 1≤xi≤n, 1 ≤ y i ≤ 10 4 1 \le y_i \le 10^4 1≤yi≤104。
- 若 o i = 2 o_i=2 oi=2,则执行第 x i ∼ y i x_i \sim y_i xi∼yi 个机器的操作各一次,此时保证 1 ≤ x i ≤ y i ≤ i − 1 1 \le x_i \le y_i \le i-1 1≤xi≤yi≤i−1。
- 特别地,保证 o 1 = 1 o_1=1 o1=1。
现在,小可可依次执行了第 c 1 , c 2 , … , c k c_1,c_2,\ldots,c_k c1,c2,…,ck 个机器的操作各一次,她想知道最后得到的数组 { a n } \{a_n\} {an} 是什么。
由于数组中元素的值可能很大,你只需要帮她求出每个元素除以 10007 10007 10007 的余数即可。
输入格式
第一行三个正整数 n , m , k n,m,k n,m,k。
接下来一行 k k k 个正整数 { c k } \{c_k\} {ck}。
接下来 m m m 行,第 i i i 行三个正整数 o i , x i , y i o_i,x_i,y_i oi,xi,yi。
输出格式
一行 n n n 个非负整数,表示数组 { a n } \{a_n\} {an} 中每个元素的值除以 10007 10007 10007 的余数。
输入输出样例 #1
输入 #1
2 3 3
1 2 3
1 1 2
2 1 1
2 1 2
输出 #1
8 0
说明/提示
样例 1 解释
先执行第 1 1 1 个机器的操作,给 a 1 a_1 a1 加上了 2 2 2。
然后执行第 2 2 2 个机器的操作,它操作了第 1 1 1 个机器,给 a 1 a_1 a1 加上了 2 2 2。
然后执行第 3 3 3 个机器的操作。它先操作了第 1 1 1 个机器,给 a 1 a_1 a1 加上了 2 2 2;然后操作了第 2 2 2 个机器,第 2 2 2 个机器又操作了第 1 1 1 个机器,给 a 1 a_1 a1 加上了 2 2 2。
综上所述,最后得到的数组为 { 8 , 0 } \{8,0\} {8,0}。
数据范围
对于 10 % 10\% 10% 的数据, n , m , k ≤ 10 n,m,k \le 10 n,m,k≤10。
对于 30 % 30\% 30% 的数据, n , m , k ≤ 1000 n,m,k \le 1000 n,m,k≤1000。
对于另外 20 % 20\% 20% 的数据, n = 1 n=1 n=1。
对于另外 20 % 20\% 20% 的数据, k = 1 k=1 k=1。
对于 100 % 100\% 100% 的数据, 1 ≤ n , m , k ≤ 2 × 10 5 1 \le n,m,k \le 2 \times 10^5 1≤n,m,k≤2×105, 1 ≤ c i ≤ m 1 \le c_i \le m 1≤ci≤m, o i ∈ { 1 , 2 } o_i \in \{1,2\} oi∈{1,2}, o 1 = 1 o_1=1 o1=1。此外,对于第 i i i 个机器,保证:
- 若 o i = 1 o_i=1 oi=1,则 1 ≤ x i ≤ n 1 \le x_i \le n 1≤xi≤n, 1 ≤ y i ≤ 10 4 1 \le y_i \le 10^4 1≤yi≤104。
- 若 o i = 2 o_i=2 oi=2,则 1 ≤ x i ≤ y i ≤ i − 1 1 \le x_i \le y_i \le i-1 1≤xi≤yi≤i−1。
C++实现
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 2e5+5;
const int mod = 10007;
int a[N],c[N],o[N],x[N],y[N],e[N],q[N];
int n,m,k,sum;
void make(int l,int r,int s){
e[r]+=s,e[r]%=mod;
e[l-1]-=s,e[l-1]%=mod;
}
signed main(){
cin>>n>>m>>k;
for(int i=1;i<=k;i++)
scanf("%lld",&c[i]);
for(int i=1;i<=m;i++)
scanf("%lld %lld %lld",&o[i],&x[i],&y[i]);
for(int i=1;i<=k;i++){
if(o[c[i]]==1)make(c[i],c[i],1);
else make(x[c[i]],y[c[i]],1);
}
for(int i=m;i>=1;i--){
sum=(sum+e[i]+mod)%mod;
if(o[i]==2)make(x[i],y[i],sum);
else a[x[i]]=(a[x[i]]+sum*(y[i]%mod)%mod)%mod;
}
for(int i=1;i<=n;i++)
printf("%lld ",a[i]);
return 0;
}
后续
接下来我会不断用C++来实现信奥比赛中的算法题、GESP考级编程题实现、白名单赛事考题实现,记录日常的编程生活、比赛心得,感兴趣的请关注,我后续将继续分享相关内容