报错“no CUDA-capable device is detected”

本文解决了一个常见的CUDA运行错误,即“没有检测到CUDA兼容设备”。通过检查显卡编号并修改Python源码中的CUDA_VISIBLE_DEVICES环境变量,成功解决了该问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

运行代码时报错:

RuntimeError: cuda runtime error (38) : no CUDA-capable device is detected at /opt/conda/conda-bld/pytorch-nightly_1553749764730/work/aten/src/THC/THCGeneral.cpp:51

解决办法:
环境没有问题的情况下,可能是使用GPU的编号有问题。

  1. 新建终端窗口,运行命令sudo nvidia-settings,在弹出的NVIDIA窗口中查看自己的显卡编号,如下图所示
    在这里插入图片描述
  2. 打开代码运行的Python源码文件,查找形如os.environ[“CUDA_VISIBLE_DEVICES”]的代码行,将右边的数字改为上述查看的显卡编号,如下图所示:
    在这里插入图片描述

好了,完成!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值