python爬取上海期货交易所数据

一:爬虫的常规方法

爬虫的常用套路是table-tr(行)-th/td(元素)


'''
Created on Feb 28, 2017


@author: hcq908
'''
import csv
import os
# import re
from urllib.request import urlopen
from bs4 import BeautifulSoup


if __name__ == '__main__':
    iCntTable = 0;
    html = urlopen("https://en.wikipedia.org/wiki/Comparison_of_text_editors")
    #html = urlopen("http://www.shfe.com.cn/bourseService/businessdata/summaryinquiry/index.html?paramid=trading_daily")
    bsObj = BeautifulSoup(html, "html.parser")
    oTables = bsObj.find_all("table")#选定第一个表格
    for table in oTables:
        iCntTable  =iCntTable + 1;
        print('处理第%d个表格 \n'%iCntTable)
        #获取表格名称
        #sTitleTag = table.find('caption');#标题只有一个,注意有的没有标题等
        #print(sTitleTag)
    # 
### 回答1: Python是一种功能强大的编程语言,它提供了许多用于爬取数据的库和模块。要爬取股票交易数据,可以运用Python的以下工具: 1. 爬虫库:Python中最常用的爬虫库是BeautifulSoup和Scrapy。BeautifulSoup主要用于解析HTML网页,而Scrapy可用于更复杂的爬虫任务,例如自动化访问多个网页、处理表单提交和登录等。 2. 网络请求库:Python中常用的网络请求库有requests和urllib。这些库可用于向指定的股票交易网站发送HTTP请求,并获取网页的HTML内容作为爬取数据的源。 3. 数据处理和分析库:Python的pandas和numpy库可用于处理和分析爬取到的股票交易数据。pandas提供了数据结构和分析工具,使得数据清洗和整理变得更简单。numpy则提供了更高效的数值计算工具。 4. 数据可视化库:matplotlib和seaborn是Python中常用的数据可视化库。这些库可用于绘制股票交易数据的图表,如折线图、柱状图和散点图等,以便更直观地呈现数据。 5. 数据存储库:Python的常用数据库有MySQL和SQLite,它们可用于将爬取到的股票交易数据存储在本地或远程数据库中,以备后续使用。 使用Python爬取股票交易数据一般的步骤如下: 1. 使用网络请求库发送HTTP请求,获取股票交易网站的HTML内容。 2. 使用爬虫库解析HTML内容,提取所需的股票交易数据。 3. 使用数据处理库对爬取到的数据进行清洗和整理。 4. 使用数据可视化库绘制股票交易数据的图表,以便更加直观地呈现数据。 5. 如果需要,将数据存储到数据库中,以便今后进行查询和分析。 总而言之,Python提供了强大的工具和库来爬取、处理和分析股票交易数据,帮助研究者和投资者更好地了解市场并做出相应的决策。 ### 回答2: Python是一种功能强大的编程语言,可以用于爬取股票交易数据。首先,我们需要下载安装Python,并确保安装了相关的第三方库,如BeautifulSoup和Requests。 一旦准备就绪,我们可以开始编写Python代码来爬取股票交易数据。首先,我们需要使用Requests库发送HTTP请求,以获取网页源代码。通过分析网页的结构,我们可以确定股票交易数据所在的页面元素和标签。然后,我们可以使用BeautifulSoup库解析网页源代码,提取所需的数据。 例如,我们可以使用Requests库向特定的股票交易网站发送HTTP请求,并将网页源代码保存在一个变量中。接下来,我们可以使用BeautifulSoup库解析网页源代码,并利用它的各种方法和函数来筛选和提取所需的数据。例如,我们可以根据网页的HTML标签、类名或其他特征来定位所需的数据。 一旦我们提取了所需的数据,我们可以将其保存在一个文件中,或者将其导入到Python数据结构中,如列表或字典,以方便进一步分析和处理。我们还可以使用Pandas库来处理和分析大量数据,并使用Matplotlib库来绘制数据可视化图表。 总而言之,借助Python编程语言和相关的第三方库,我们可以方便地爬取股票交易数据,并进行后续的数据处理和分析。这为投资者和分析师提供了更多的工具和资源,以支持他们做出准确的决策和预测。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值