最长上升子序列

本文介绍了一种求解最长递增子序列问题的有效算法,通过动态规划思想,利用结构体存储每个元素及其对应的最长子序列长度,最终找出给定序列中最长递增子序列的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4
 
 
#include<iostream>
#include<malloc.h>
using namespace std;
struct td
{
    int  num;   // 数
    int  l;     // 长度
} *st;
int main()
{
    int n, i, j, max;
    while(cin >> n)
    {
        st = (struct td *)malloc(sizeof(struct td) * n);
        for(i = 0; i < n; i++)
        {
            cin >> st[i].num;
            st[i].l = 1;        // 初值为1
        }
        for(i = 0; i < n; i++)
        {
            max = 0;
            for(j = 0; j <= i; j++)
                if(st[i].num > st[j].num && st[j].l > max)  // 下标为i的数比较下标为j的数&&找到长度最长的
                {
                    max = st[j].l;   // max=最长的长度
                }
            st[i].l = max + 1;      //还要加上本身 1
        }
        for(i = 0; i < n; i++)
            if(st[i].l > max)  max = st[i].l;  // 找出最大值
        cout << max << endl;
        free(st);
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值