
AI模型加速
One橙序猿
我是一只爱搬砖的橙序猿!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
TensorRT与Pytorch Tensor交互方法
TensorRT在执行模型时使用context.execute_async方法,这时候需要参数bindings。bindings:一个是输入,一个是输出,这个参数都是cuda中的数据,所以我们可以直接传torch Tensor的指针即可。self.inputs = torch.zeros_like(self.demo_in)self.out = torch.zeros_like(self.demo_out)context.execute_async(batch_size=self.bat..原创 2021-10-13 16:54:06 · 947 阅读 · 1 评论 -
YOLOV5加速之TensorRT Python版API构建模型
看到几篇文章转YOLOV5到TRT时基本都在用C++构建,实际上TRT也有Python版本的API,自己试着搞了下也能用效果一样,下面贴下代码:from collections import OrderedDictimport tensorrt as trtimport torchfrom numpy import ceilimport numpy as npTRT_LOGGER = trt.Logger(trt.Logger.WARNING)INPUT_BLOB_NAME = "d原创 2021-09-30 09:01:45 · 1074 阅读 · 2 评论 -
YOLOV5加速之TensorRT篇
之前写过一篇Android版本yolov5s的博客。最近工作搞了下TensorRT,也遇到几个坑不过最终还是实现了,做一下小小的分享。 这里直接上github上大牛的连接,我的代码是在他的基础上改的。里面有很多模型的加速直接看里面的yolov5即可。https://github.com/wang-xinyu/tensorrtx注:整个过程在llinux环境下完成大概流程:1.将torch模型转换型到.wts ...原创 2021-08-05 15:57:18 · 3956 阅读 · 18 评论 -
yolov5模型PC端加速方法
最近工作中要对YOLOV5模型进行GPU加速,尝试过Tensorrt及Torch版本部署。下面做一下阶段总结,后期有新发现会持续更新。1.Tensorrt方法: GPU版本加速首先想到的肯定是TRT了,也尝试github上YOLOV5版本的TRT方法在原本作者的基础上自己也做了优化并提升了速度,主要是原作者模型的前后处理对于大batchsize优化并不是很好以及在GPU中的内存拷贝方法有部分冗余。毕竟代码是基于python版本的Torch上的,所以我也做了torch结合tensorrt...原创 2021-07-26 14:42:50 · 3027 阅读 · 0 评论