Pytorch BERT笔记

本文展示了如何在使用HuggingFaceTransformers库中的BertTokenizer时,关闭自动的Subword分词功能,以处理特定的自然语言文本,如Ilovenaturallanguageprocessing.,并将其转换为tokenIDs.

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关闭 subword 分词

from transformers import BertTokenizer

# 初始化分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# 输入文本
text = "I love natural language processing."

# 手动分词,关闭 subword 分词
tokens = ['[CLS]'] + tokenizer.basic_tokenizer.tokenize(text) + ['[SEP]']

# 转换为 token IDs
token_ids = tokenizer.convert_tokens_to_ids(tokens)

# 输出编码后的 token IDs
print(token_ids)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值