目录
1.Pyramid Edge Extraction Module
2.Mini Multi-Task Learning Module
3.Cross Features Fusion Module
本文目前只着重关注记录文中边界感知的实现方法
参考博客:医学图像分割新网络:Boundary-aware Context Neural Network for Medical Image Segmentation_医学图像语义分割网络-CSDN博客
文章信息
一、摘要
医学图像分割可以为进一步的临床分析和疾病诊断提供可靠的依据。卷积神经网络(CNN)的医学图像分割的性能已经显着提高。然而,大多数现有的基于CNN的方法往往产生不令人满意的分割掩模没有准确的对象边界。这是由有限的上下文信息和连续池化和卷积操作后的不充分的鉴别特征映射造成的。由于医学图像具有类内差异大、类间不区分和噪声等特点,提取强有力的上下文信息并聚集有鉴别力的特征进行细粒度分割仍然是一个挑战。在本文中,我们制定了一个边界感知上下文神经网络(BA-Net)的二维医学图像分割,以捕捉更丰富的背景和保留精细的空间信息。BA-Net采用编解码器架构。在编码器网络的每一级,首先提出了金字塔边缘提取模块,以获得多粒度的边缘信息。然后,我们设计了一个小型的多任务学习模块,用于联合学习分割对象掩模和检测病变边界。特别是,提出了一种新的交互式注意桥接两个任务,以实现不同任务之间的信息互补性,有效地利用边界信息,为更好的分割预测提供强有力的线索。最后,交叉特征融合模块的目的是选择性地聚合来自整个编码器网络的多层次特征。通过级联三个模块,编码更丰富的上下文和细粒度的每一个阶段的特