基于Matlab实现PCA的人脸识别

数字图像处理 Final Project

1. 算法描述

使用特征脸算法进行实验。

以下是特征脸的实现过程:

  1. 准备一个训练集的人脸图像。本实验选取剑桥大学 ORL 人脸数据库。一共 40 个不同的人,每人 10 张人脸图像,随机选取 7 张用作训练(取平均后作为一张脸),图像分辨率为 112*92.
  2. 将原始图像的每一行的像素串联在一起,产生一个具有 112*92 个元素的列向量,每个图像被视为一个向量。然后,使所有的训练集的图像(一共 40 张)存储在一个单一的矩阵 T 中,矩阵的每一列是一个图像。
  3. 减去均值向量. 均值向量 a 要首先计算,并且 T 中的每一个图像都要减掉均值向量。
  4. 计算协方差矩阵 S 的特征值和特征向量。每一个特征向量的维数与原始图像的一致,因此可以被看作是一个图像。因此这些向量被称作特征脸。
  5. 选择主成分。一般选择最大的 k 个特征值,保留对应的特征向量。
  6. 对每个训练图像的向量,投影到特征空间后得到一组坐标。对测试图像,也作同样的投影运算,得到坐标,与训练图像的坐标进行二范数最小匹配。

2. 源代码

完整代码见附件 main.m,MinMaxTransform.m 文件。

step 0: 读取图像,对每个人,随机选择 7 张用作训练,3 张用作测试

image_dims = [112, 92];
num_images = 40;
test_images = cell(40, 3);
train_images = zeros(prod(image_dims), num_images);

input_dir = 'att_faces';

for i=1:40
    sub_dir = strcat('s', num2str(i));
    images = cell(10);
    for j=1:10
        filename = fullfile(input_dir, sub_dir, strcat(num2str(j), '.pgm'));
        images{j} = imread(filename); 
    end
   
    images = images(randperm(10));
    
    img = zeros(image_dims);
    
    for j=1:7
        img = img + double(images{j});
    end
    
    img = img / 7;
    train_images(:, i) = img(:);
    
    for j=8:10
        test_images{i,j-7}=images{j};
    end
end

step 1:计算均值图像和 mean-shifted 图像

mean_face = mean(train_images, 2);
shifted_images = train_images - repmat(mean_face, 1, num_images);

step 2:  计算特征值和特征向量

[full_evectors, score, evalues] = pca(train_images');

step 3: 显示特征脸

figure;
for i = 1:num_eigenfaces
    subplot(5, ceil(num_eigenfaces/5), i);
    evector = MinMaxTransform(reshape(evectors(:,i), image_dims));
    imshow(evector);
end

其中 MinMaxTransform 函数用于将特征向量变换到[0,255]值域上,定义如下:

function [res] = MinMaxTransform(image)
[m,n] = size(image);
Min = min(min(image));
Max = max(max(image));
range = Max - Min; 
res = zeros(m,n);
for i=1:m
    for j=1:n
        res(i,j)=(image(i,j)-Min)*255/range;
    end
end
res = uint8(res);
end

step 4: 保留主成分,即前 num_eigenfaces 个特征向量。然后测试。

evectors = full_evectors(:, 1:num_eigenfaces);
features = evectors' * shifted_images;

cnt = 0;
for i=1:40
    for j=1:3
        input_image = double(test_images{i,j});
        feature_vec = evectors' * (input_image(:) - mean_face);
        
        similarity_score = arrayfun(@(n) 1 / (1 + norm(features(:,n) - feature_vec)), 1:num_images);

        % find the image with the highest similarity
        [match_score, match_ix] = max(similarity_score);

        if match_ix == i
            cnt = cnt + 1;
    end
end

cnt 即正确识别的图像数。

3. 实验结果

3.1 性能测试

特征维数取不同值时的准确率
测试图像:120 张

特征维数

测试正确的图像数

正确率

1

17

14.17%

2

47

39.17%

3

66

55.00%

4

80

66.67%

5

87

72.50%

6

86

71.67%

7

93

77.50%

8

100

83.33%

9

102

85.00%

10

102

85.00%

11

106

88.33%

12

105

87.50%

13

105

87.50%

14

105

87.50%

15

107

89.17%

16

108

90.00%

17

108

90.00%

18

108

90.00%

19

108

90.00%

20

108

90.00%

21

108

90.00%

22

108

90.00%

23

109

90.83%

24

110

91.67%

25

110

91.67%

26

109

90.83%

27

109

90.83%

28

110

91.67%

29

110

91.67%

30

109

90.83%

31

109

90.83%

32

109

90.83%

33

109

90.83%

34

109

90.83%

35

109

90.83%

36

109

90.83%

37

109

90.83%

38

109

90.83%

39

109

90.83%

3.2 特征脸图像

如果有 N 个训练样本,则最多有 N  1 个对应非零特征值的特征向量。本实验中有 40 个训练样本,所以特征向量有 39 个。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神仙别闹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值