反馈系统稳定性分析与设计全解析
1. 极点位置与系统特性
在反馈系统中,极点位置对系统性能有着关键影响。随着增益 $K$ 的增加,闭环极点的轨迹会发生变化。这里存在一个基本的权衡关系:高直流开环增益意味着闭环直流误差较小,但可能会影响系统的稳定性。当 $K$ 趋近于无穷大时,闭环极点呈现出严重的欠阻尼状态。
2. 劳斯稳定性判据
劳斯判据是一种用于确定特征方程在右半平面根的数量的数学方法。使用劳斯判据时,我们不需要计算根的具体位置,只需判断右半平面是否存在根。具体步骤如下:
1. 写出特征多项式 :
特征多项式为 $1 + L.T. = a_ns^n + a_{n - 1}s^{n - 1} + \cdots + a_1s + a_0$。我们关注的是 $(1 + L.T.)$ 在右半平面的零点,这些零点对应着闭环极点。同时,假设 $a_n \neq 0$ 以进行后续分析。
2. 检查系数 :
稳定性的一个必要(但不充分)条件是特征方程中没有零系数,且所有系数具有相同的符号。
3. 构建劳斯矩阵 :
当 $n$ 为偶数时,矩阵按以下模式填充:
| | | | | | |
|—|—|—|—|—|—|
| $a_0$ | $a_2$ | $a_4$ | $\cdots$ | | |
| $a_1$ | $a_3$ | $a_5$ | $\cdots$ | | |
| $b_1$ | $b_2$ | $b_3$ | $\cdots$ | | |
| $c