带阻滤波器设计与实现全解析
1. 无源带阻滤波器去归一化公式
无源带阻滤波器去归一化公式如下:
[
\begin{align }
C_{Series}&=\frac{1}{2\pi F_{U}F_{L}R X}\
L_{Series}&=\frac{R X}{2\pi(F_{U}-F_{L})}\
C_{Shunt}&=\frac{2\pi(F_{U}-F_{L})X}{2\pi F_{U}F_{L}R}\
L_{Shunt}&=\frac{R}{2\pi(F_{U}-F_{L})X}
\end{align }
]
其中,串联和并联下标表示所考虑的电路元件。串联下标表示串联臂(并联谐振),并联下标表示并联臂(串联谐振)。在这些方程中,因子 (X) 是归一化低通元件值。
以重新设计三阶巴特沃斯滤波器为例,由于它是对称设计,只需计算前三个分支。已知 (R = 50),(F_{U}=(320 + 1.2)\text{ kHz}=321.2\text{ kHz}),(F_{L}=(320 - 1.2)\text{ kHz}=318.8\text{ kHz})。
1.1 第一分支
第一分支 (X = 1.000),先考虑并联臂(串联谐振)情况:
[
\begin{align }
C_{Shunt}&=\frac{2\pi(F_{U}-F_{L})X}{2\pi F_{U}F_{L}R}=74.6\text{ pF}\
L_{Shunt}&=\frac{R}{2