带阻滤波器与电流反馈放大器的原理及特性
带阻滤波器
基本带阻滤波器
在带阻滤波器中,若某部分的品质因数(Q)较高,例如为 75,那么电阻 $R_1$ 的值将是 $R_2$ 和 $R_3$ 的 75 倍。电容 $C$ 的取值应使 $R_1$ 接近较低的电阻限制值,此时 $R_2$ 会接近推荐的较高电阻限制值。该电路可独立调节谐振频率和 Q 值,其中 $R_1$ 用于调节谐振时的 Q 值,$R_2$ 和 $R_3$ 则决定谐振频率,在谐振频率处,增益固定为 $G_R = 2$。
基于 DABP 部分的带阻滤波器去归一化设计
以四阶巴特沃斯 50Hz 陷波滤波器的一个极点为例,该极点的谐振频率 $f_R = 51.456284Hz$ 或 $323.3093676rad/s$,Q 值为 $5.361447$。设 $C = 0.1\mu F$,$R = R’ = 10k\Omega$,则可根据以下公式计算电阻值:
[
\begin{align }
R_2&=R_3 = 4922\Omega\
R_1&=Q\times R_2 = 26393\Omega
\end{align }
]
状态变量带阻滤波器
状态变量设计可用于全极点响应或需要在阻带中心频率处有零点的滤波器。它对运算放大器的增益带宽积限制的敏感度较低,部分 Q 因子可达 200,但需要四个运算放大器。该滤波器的方程允许任意选择电容 $C$,相关电阻计算公式如下:
[
\begin{align }
R_1&=\frac