使用改进的卷积神经网络方法进行基因表达的血液癌症分类
1 引言
在现代医学中,基因表达数据分析对于癌症的早期诊断和治疗具有重要意义。随着微阵列技术的发展,科学家们能够同时测定数千个基因的表达水平,从而获得大量有关细胞功能的信息。这些信息不仅可以用于癌症的预后和诊断,还可以帮助医生识别与特定癌症生物特性相关的基因,进而指导个性化治疗。然而,从庞大的基因数据集中提取有意义的特征并选择合适的基因组合是一个复杂的任务,因为数据中通常存在大量的噪声和冗余信息。
为了应对这一挑战,本章介绍了一种改进的卷积神经网络(MCNN)方法,用于区分急性髓细胞性白血病(AML)和急性淋巴细胞性白血病(ALL)。通过结合粒子群优化(PSO)算法和加速鲁棒特征(SURF)描述符,该方法不仅提高了分类的准确性,还降低了计算复杂度。此外,文中还讨论了如何通过选择与特定癌症相关的基因来帮助早期诊断癌症,并为癌症患者提供个性化的治疗方案。
2 相关工作
近年来,粒子群优化(PSO)算法被广泛应用于基因选择问题的求解。Alba等人在其研究中分析了PSO、支持向量机(SVM)和遗传算法(GA)作为高维微阵列信息分类器的效果。进一步发展了PSO,提出了几何PSO,以在六个不同的公共癌症数据集上与GA进行比较分析。一种结合PSO和GA作为优化方法,SVM作为分类方法的基因选择方法已被提出。该方案已在包括白血病、结肠和乳腺癌数据在内的三个基因表达基准数据集上进行了检验。
在所提出的方法中,设计一种混合性质模型的意图或计划是为了避免陷入局部最优解的群体优化问题,同时结合SVM分类器来适当确定与癌症分组和分类相关的接近理想的数据信息基因子集。在所提出的这项研究中,Mohammad等人改