1、题目链接
2、题目描述
给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
提示:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
3、核心思路
1、暴力破解
- 两层for循环遍历,记录所有的面积,留下最大的面积
2、双指针
思路:
使用双指针从数组的两端开始向中间移动。每次移动较矮的指针,计算当前面积并更新最大值。这样可以确保在移动过程中不会错过可能的更大面积。
步骤:
- 初始化左指针
left = 0
和右指针right = len(height) - 1
,以及最大面积max_area = 0
。 - 当
left < right
时循环:- 计算当前容器的面积:
current_area = (right - left) * min(height[left], height[right])
。 - 更新
max_area
。 - 移动较矮的指针(若左指针较矮则右移,否则左移)。
- 计算当前容器的面积:
- 返回
max_area
。
正确性证明:
每次移动较矮的指针,可以确保不会错过更大的面积。因为容器的容量受限于较矮的一边,移动较高的指针无法增加容量,而移动较矮的指针可能找到更高的边界。
代码实现
Java
class Solution {
public int maxArea(int[] height) {
int maxArea = 0;
int left = 0;
int right = height.length - 1;
while (left < right) {
int currentHeight = Math.min(height[left], height[right]);
int currentArea = currentHeight * (right - left);
maxArea = Math.max(maxArea, currentArea);
if (height[left] < height[right]) {
left++;
} else {
right--;
}
}
return maxArea;
}
}
C++
class Solution {
public:
int maxArea(vector<int>& height) {
int max_area = 0;
int left = 0, right = height.size() - 1;
while (left < right) {
int current_height = min(height[left], height[right]);
max_area = max(max_area, current_height * (right - left));
if (height[left] < height[right]) {
left++;
} else {
right--;
}
}
return max_area;
}
};
Go
func maxArea(height []int) int {
maxArea := 0
left, right := 0, len(height)-1
for left < right {
currentHeight := min(height[left], height[right])
currentArea := currentHeight * (right - left)
if currentArea > maxArea {
maxArea = currentArea
}
if height[left] < height[right] {
left++
} else {
right--
}
}
return maxArea
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
Python
class Solution:
def maxArea(self, height: List[int]) -> int:
max_area = 0
left, right = 0, len(height) - 1
while left < right:
current_height = min(height[left], height[right])
current_area = current_height * (right - left)
max_area = max(max_area, current_area)
if height[left] < height[right]:
left += 1
else:
right -= 1
return max_area
JavaScript
var maxArea = function(height) {
let maxArea = 0;
let left = 0, right = height.length - 1;
while (left < right) {
const currentHeight = Math.min(height[left], height[right]);
const currentArea = currentHeight * (right - left);
maxArea = Math.max(maxArea, currentArea);
if (height[left] < height[right]) {
left++;
} else {
right--;
}
}
return maxArea;
};
复杂度分析:
- 时间复杂度:O(n),仅需一次遍历数组。
- 空间复杂度:O(1),仅使用常数空间。