深入理解动态规划与字符串匹配算法
1. 动态规划概述
动态规划(Dynamic Programming)是一种通过将复杂问题分解为更小的子问题来解决问题的方法。它主要用于优化问题,通过存储子问题的解来避免重复计算,从而提高算法的效率。动态规划的核心在于找到最优子结构和重叠子问题的特性,这使得它可以高效地解决许多组合优化问题。
1.1 最优子结构
最优子结构是指一个问题的最优解可以通过其子问题的最优解构造出来。例如,在求解最长公共子序列(Longest Common Subsequence, LCS)问题时,我们可以将问题分解为多个较小的子问题,并通过递归的方式逐步求解。
示例:
假设我们有两个序列 X
和 Y
,长度分别为 m
和 n
。我们可以用一个二维数组 c
来记录子问题的解,其中 c[i][j]
表示 X
的前 i
个字符和 Y
的前 j
个字符的最长公共子序列的长度。
def lcs_length(X, Y):
m = len(X)
n = len(Y)
c = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):