高斯光学与不确定性原理:基础与应用
在光学领域,高斯光学是一种强大的工具,它利用矩阵形式来描述光线在光学系统中的传播和成像过程。这种方法不仅简化了复杂的光学问题,还为光学元件的设计提供了有效的手段。下面我们将深入探讨高斯光学的基本原理和重要的矩阵形式。
1. 高斯光学基础
高斯光学以卡尔·弗里德里希·高斯(Carl Friedrich Gauss)命名,是几何光学中的一种技术,用于描述在近轴近似下光线在光学系统中的行为。这里,我们将光学轴设定为 z 轴,光线大致沿该方向传播,并且只考虑位于 x - z 平面且靠近光学轴的光线,这些光线被称为近轴光线。
由于近轴光线与光学轴的夹角很小,我们可以使用近似关系 $\sin\theta\approx\tan\theta\approx\theta$。这种近似使得数学处理大大简化,例如,斯涅尔折射定律 $n_1\sin\varphi_i = n_2\sin\varphi_t$ 可以线性化为 $n_1\varphi_i = n_2\varphi_t$。
在描述光线时,我们使用光线在给定 z 平面上相对于光学轴的高度 $x$ 和发射角度 $\theta$。为了确保后续矩阵的性质,我们用 $v = n\theta$ 代替 $\theta$,其中 $n$ 是光线所在介质的折射率。这样,光线在输入平面的坐标为 $(x_1, v_1)$,经过光学系统后,在输出平面的坐标为 $(x_2, v_2)$。在近轴近似下,输出坐标与输入坐标呈线性关系,可以表示为:
[
\begin{cases}
x_2 = Ax_1 + Bv_1 \
v_2 = Cx_1 + Dv_1
\end{cases}