4、Hadoop与YARN:分布式计算的变革之旅

Hadoop与YARN:分布式计算的变革之旅

1. Hadoop基础架构及局限性

Hadoop是用于处理、生成和存储大型数据集的分布式系统,其核心组件包括HDFS和MapReduce。不过,它们也存在一些局限性。

1.1 HDFS的局限性
  • 缺乏高可用性 :在Hadoop 1.x及更早版本中,HDFS缺乏高可用性。
  • 小文件处理效率低 :处理大量小文件时效率不佳。
  • 缺乏透明压缩 :不具备透明压缩功能。
  • 不支持随机写入 :仅支持追加写入,主要设计用于大文件的高吞吐量顺序读写。
1.2 MapReduce的局限性
  • 不适合实时数据访问 :基于批处理架构,不适合需要实时数据访问的场景。
  • 不适合全局同步或可变数据共享任务 :属于无共享架构,对于需要全局同步或共享可变数据的任务不太适用。
1.3 版本兼容性问题
  • MapReduce API运行时兼容性 :Hadoop 2版本在MapReduce API运行时兼容性方面带来了一些问题,尤其是在 org.hadoop.mapreduce 包中。通常的解决方法是针对Hadoop 2重新编译代码,或者引入兼容性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值