信息学奥赛一本通 1339:【例3-4】求后序遍历

文章介绍了如何使用C++编程语言通过先序和中序遍历序列求解二叉树的后序遍历,通过递归方法分治左右子树并添加根节点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

1339:【例3-4】求后序遍历

考点

  1. 二叉树的遍历方式
  2. 根据二叉树遍历序列画出二叉树

代码

#include<iostream>
#include<queue>
using namespace std;
// 输入先序和中序,求后序
void calc(string pre, string mid, string& post) {
    if (pre.empty() || mid.empty()) {
        return;
    }
    // 找出根节点
    char root = pre[0];
    int rootIndex = mid.find(root);
    // 分开左右子树
    string leftPre = pre.substr(1, rootIndex);
    string leftMid = mid.substr(0, rootIndex);

    string rightPre = pre.substr(rootIndex + 1);
    string rightMid = mid.substr(rootIndex + 1);

    // 递归求解
    calc(leftPre, leftMid, post);
    calc(rightPre, rightMid, post);

    // 加上根节点
    post += root;
}

int main() {
    string pre, mid, post;
    cin >> pre >> mid;
    calc(pre, mid, post);
    cout << post << endl;

	return 0;
}

评测结果

### 关于信息学奥赛一本题目1339的解法 对于信息学奥赛一本中的题目1339,该题目的名称为“最大子矩阵和”。这道题目要在一个给定的整数矩阵中找到一个子矩阵,使得这个子矩阵内所有元素之和最大。 为了解这个问题,可以采用动态规划的方法来解决。具体来说,可以过枚举上下边界的方式将二维问题转化为一维的最大连续子序列和的问题。下面是一个具体的实现方案: #### 动态规划思路 过固定上边界i并逐步增加下边界j,在每次更新时计算当前范围内每一列的累加值sum[k] (k代表第k列),这样就得到了一个新的数组sum[]。此时原问题转化成了在一维数组sum[]里寻找最大的连续子段和的问题[^1]。 #### C++代码示 ```cpp #include <iostream> #include <algorithm> using namespace std; const int MAXN = 105; int mat[MAXN][MAXN]; int sum[MAXN]; // 计算一维数组的最大子序和函数 int maxSubArraySum(int arr[], int size) { int max_so_far = INT_MIN, max_ending_here = 0; for (int i = 0; i < size; i++) { max_ending_here += arr[i]; if (max_so_far < max_ending_here) max_so_far = max_ending_here; if (max_ending_here < 0) max_ending_here = 0; } return max_so_far; } void solve() { int N; cin >> N; // 输入矩阵数据 for (int i = 1; i <= N; ++i) for (int j = 1; j <= N; ++j) cin >> mat[i][j]; int result = INT_MIN; // 枚举上下边界的组合 for (int top = 1; top <= N; ++top) { fill(sum + 1, sum + N + 1, 0); // 初始化每列累积值 for (int bottom = top; bottom <= N; ++bottom) { // 更新当前范围内的各列累计值 for (int k = 1; k <= N; ++k) sum[k] += mat[bottom][k]; // 使用 Kadane&#39;s Algorithm 寻找最大子阵列和 result = max(result, maxSubArraySum(sum, N)); } } cout << "Max Sum of Submatrix is: " << result << endl; } ``` 这段程序首先定义了一个辅助函数`maxSubArraySum()`用于处理转换后的一维数组上的最大连续子序列和查询;接着在外层循环遍历所有的可能矩形区域,并调用上述函数获取这些区域内元素总和的最大值作为最终的结果输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值