Description
有一个体积为 CCC 的背包和若干种物品.
前 nnn 种物品,第 iii 种体积为 viv_ivi,价值 wiw_iwi,有 did_idi 件.
后 mmm 种物品,每种对应一个函数 f(x)=aix2+bix+cif(x)=a_ix^2+b_ix+c_if(x)=aix2+bix+ci,表示若选 xxx 体积的这件物品,价值为 f(x)f(x)f(x).(不选当作选 000 体积)
选择一些物品,使得体积和不超过 CCC,求最大价值.
Limitations
1≤n≤1041\le n\le 10^41≤n≤104
1≤m≤51\le m\le 51≤m≤5
1≤C≤1041\le C\le 10^41≤C≤104
1≤wi,vi,di≤10001\le w_i,v_i,d_i\le 10001≤wi,vi,di≤1000
∣ai∣,∣bi∣,∣ci∣≤1000|a_i|,|b_i|,|c_i|\le 1000∣ai∣,∣bi∣,∣ci∣≤1000
1s,128MB1\text{s},128\text{MB}1s,128MB
Solution
不考虑后 mmm 件物品,那么就是一个多重背包,然而暴力跑 DP
铁定超时,需要优化.
多重背包一般有两种优化方式:二进制拆分和单调队列.
由于常数原因,我们选用二进制拆分,将每堆物品分成若干组,每组分别有 20,21,⋯ ,2k−1,d−2k+12^0,2^1,\cdots,2^{k-1},d-2^k+120,21,⋯,2k−1,d−2k+1 个(kkk 是满足 n−2k+1>0n-2^k+1>0n−2k+1>0 的最大整数).
那么用这些组就可以组出 0∼d0\sim d0∼d 个的所有选法,这样就转化成了 010101 背包.
对于后 mmm 个物品,由于 mmm 很小,我们可以枚举给每个物品分配的体积,暴力更新.
总时间复杂度为 O(C∑logdi+mC2)O(C\sum\log d_i+mC^2)O(C∑logdi+mC2).
Code
1.15KB,1.83s,2.55MB (in total, C++20 with O2)1.15\text{KB},1.83\text{s},2.55\text{MB}\;\texttt{(in total, C++20 with O2)}1.15KB,1.83s,2.55MB(in total, C++20 with O2)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n, m, c;
scanf("%d %d %d", &n, &m, &c);
vector<pair<int, i64>> goods;
for (int i = 0, v, w, d; i < n; i++) {
scanf("%d %d %d", &v, &w, &d);
int t = 1;
while (d) {
if (d - t <= 0) t = d, d = 0;
else d -= t;
goods.emplace_back(t * v, 1LL * t * w);
t <<= 1;
}
}
vector<i64> dp(c + 1);
for (auto [v, w] : goods)
for (int k = c; k >= v; k--) chmax(dp[k], dp[k - v] + w);
for (int i = 0, A, B, C; i < m; i++) {
scanf("%d %d %d", &A, &B, &C);
auto f = [&](int x) { return 1LL * A * x * x + 1LL * B * x + C; };
for (int k = c; k >= 0; k--)
for (int j = 0; j <= k; j++) chmax(dp[k], dp[k - j] + f(j));
}
printf("%lld", dp[c]);
return 0;
}