Description
给定序列 a=(a1,a2,⋯ ,an)a=(a_1,a_2,\cdots,a_n)a=(a1,a2,⋯,an),另有一个存储三元组的列表 LLL.
有 mmm 个操作分两种:
- add(l,r,k)\operatorname{add}(l,r,k)add(l,r,k):将 (l,r,k)(l,r,k)(l,r,k) 插入到 LLL 末尾.
- query(l,r)\operatorname{query}(l,r)query(l,r):求 ∑i=lrai\sum\limits_{i=l}^r a_ii=l∑rai.
每次操作后,对于 LLL 中每一项 (l,r,k)(l,r,k)(l,r,k),将 al∼ara_l\sim a_ral∼ar 加上 kkk.
Limitations
1≤n,m≤1051\le n,m\le 10^51≤n,m≤105
1≤l≤r≤n1\le l\le r\le n1≤l≤r≤n
1≤ai≤1041\le a_i\le 10^41≤ai≤104
∣k∣≤104|k|\le 10^4∣k∣≤104
0.2s,256MB\textcolor{red}{0.2\text{s}},256\text{MB}0.2s,256MB
Solution
直接硬做是无法维护的,考虑每次修改后立刻计算贡献.
下设当前为第 iii 次操作.
- 如果是修改,则直到最后一次操作前,al∼ara_l\sim a_ral∼ar 会被加 (m−i)(m-i)(m−i) 次 kkk.
- 但如果是询问,那么没有执行的 (m−i)(m-i)(m−i) 次操作的贡献要减掉.
接下来很显然了,我们维护序列 add,del\textit{add},\textit{del}add,del,初始时 add=a\textit{add}=aadd=a,del\textit{del}del 为全 000.
- 对于修改,我们给 addl∼addr\textit{add}_l\sim\textit{add}_raddl∼addr 加上 k×(m−i)k\times(m-i)k×(m−i),给 dell∼delr\textit{del}_l\sim\textit{del}_rdell∼delr 加上 kkk.
- 对于查询,答案就是 (∑j=lraddj)−(m−i)×(∑j=lrdelj)(\sum\limits_{j=l}^r add_j)-(m-i)\times(\sum\limits_{j=l}^r del_j)(j=l∑raddj)−(m−i)×(j=l∑rdelj).
add,del\textit{add},\textit{del}add,del 可用线段树维护,但是时限很紧,需要用 BIT
维护,实现见代码.
Code
1.6KB,0.16s,3.6MB (in total, C++20 with O3)1.6\text{KB},0.16\text{s},3.6\text{MB}\;\texttt{(in total, C++20 with \textcolor{red}{O3})}1.6KB,0.16s,3.6MB(in total, C++20 with O3)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
inline int lowbit(int x) { return x & (-x); }
struct bit {
int n;
vector<i64> c1, c2;
inline bit() {}
inline bit(int _n): n(_n) {
c1.resize(n);
c2.resize(n);
}
inline void add(int x, i64 k) {
for (int i = x + 1; i <= n; i += lowbit(i)) {
c1[i - 1] += k;
c2[i - 1] += k * x;
}
}
inline i64 ask(int x) {
i64 res = 0;
for (int i = x + 1; i; i -= lowbit(i)) {
res += c1[i - 1] * (x + 1) - c2[i - 1];
}
return res;
}
inline void update(int l, int r, i64 v) {
add(l, v);
add(r + 1, -v);
}
inline i64 sum(int l, int r) {
return ask(r) - ask(l - 1);
}
};
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n; scanf("%d", &n);
bit f1(n), f2(n);
for (int i = 0, x; i < n; i++) f1.update(i, i, (scanf("%d", &x), x));
int m; scanf("%d", &m);
for (int i = 0, op, l, r, x; i < m; i++) {
scanf("%d %d %d", &op, &l, &r), l--, r--;
if (op == 1) {
scanf("%d", &x);
f1.update(l, r, 1LL * x * (m - i - 1));
f2.update(l, r, x);
}
else {
printf("%lld\n", f1.sum(l, r) - f2.sum(l, r) * (m - i - 1));
}
}
return 0;
}