《动手学深度学习 Pytorch版》 6.2 图像卷积

探索PyTorch中的卷积层,包括互相关运算、卷积核设计、边缘检测应用,以及如何通过学习调整卷积核权重。
import torch
from torch import nn
from d2l import torch as d2l

6.2.1 互相关计算

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])

此处应为:

012
345
678
*
01
23
=
1925
3743

[0\times0+1\times1+3\times2+4\times3=19\ 1\times0+2\times1+4\times2+5\times3=25\ 3\times0+4\times1+6\times2+7\times3=37\ 4\times0+5\times1+7\times2+8\times3=43 ]

输出大小应为原宽度/高度减去卷积核宽度/高度再加上1,即: ((n_h-k_h+1)\times(n_w-k_w+1))

def corr2d(X, K):  #@save
    """计算二维互相关运算"""
    h, w = K.shape
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))  # 输出矩阵
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()  # 对位相乘再求和 
    return Y

corr2d(X, K)

tensor([[19., 25.],
        [37., 43.]])

6.2.2 卷积层

卷积层被训练的参数是卷积核和标量偏置。如之前一样,卷积核权重也采用随机初始化。

class Conv2D(nn.Module):
    def init(self, kernel_size):
        super().init()
        # 声明模型参数
        self.weight = nn.Parameter(torch.rand(kernel_size))  # 随机初始化卷积核
        self.bias = nn.Parameter(torch.zeros(1))

def forward(self, x):  # 前向传播
    return corr2d(x, self.weight) + self.bias

6.2.3 图像中目标的边缘检测

简单应用卷积:通过找到像素变化位置来检测图像中不同颜色的边缘。

如下,构造一个简单的黑白图像,0为黑色像素,1为白色像素。再构造一个 (1\times2) 的卷积核 K,进行互相关计算时,如果水平相邻两元素相同则输出为零,否则输出为非零。

X = torch.ones((6, 8))
X[:, 2:6] = 0  # 中间四列为白色,其余为黑色
X
tensor([[1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.]])
K = torch.tensor([[1., -1.]])  # 卷积核

Y = corr2d(X, K) # 进行互相关运算了,则1为从白色到黑色的边缘 -1为从黑色到白色的边界 Y

tensor([[ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.]])
corr2d(X.T, K)  # 若进行转置则无结果,此卷积核如设计的一样,仅适用于垂直边缘的检测。
tensor([[0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.]])

6.2.4 学习卷积核

以后不可能永远手动设计卷积核,卷积核权重应该是可学习的。

conv2d = nn.Conv2d(1, 1, kernel_size=(1, 2), bias=False)  # 构造一个具有1个输出通道和形状为(1,2)的卷积核的二维卷积层

此二维卷积层输入和输出均为四维:批量大小、通道、高度、宽度(其中批量大小和通道数都为1)

X = X.reshape((1, 1, 6, 8)) Y = Y.reshape((1, 1, 6, 7)) lr = 3e-2 # 学习率

for i in range(10): Y_hat = conv2d(X) l = (Y_hat - Y) ** 2 # 计算平方误差 conv2d.zero_grad() l.sum().backward() conv2d.weight.data[:] -= lr * conv2d.weight.grad # 迭代卷积核 if (i + 1) % 2 == 0: print(f'epoch {i+1}, loss {l.sum():.3f}')

epoch 2, loss 19.846
epoch 4, loss 6.740
epoch 6, loss 2.527
epoch 8, loss 0.996
epoch 10, loss 0.401
conv2d.weight.data.reshape((1,2))  # 迭代十次后已经很接近我们自定义的卷积核了
tensor([[ 1.0526, -0.9225]])

练习

(1)构建一个具有对角线边缘的图像 X

a. 如果将本节中举例的卷积核K应用于X,会发生什么?
b. 如果转置 X 会发生什么?
c. 如果转置 K 会发生什么?
X = torch.ones((8, 8))
X[0, :2] = 0
for i in range(1, X.shape[0]-1): # 设置对角线边缘
    X[i, i] = 0
    X[i, i-1] = 0
    X[i, i+1] = 0
X[X.shape[0]-1, -2:] = 0

K = torch.tensor([[1., -1.]])

X

tensor([[0., 0., 1., 1., 1., 1., 1., 1.],
        [0., 0., 0., 1., 1., 1., 1., 1.],
        [1., 0., 0., 0., 1., 1., 1., 1.],
        [1., 1., 0., 0., 0., 1., 1., 1.],
        [1., 1., 1., 0., 0., 0., 1., 1.],
        [1., 1., 1., 1., 0., 0., 0., 1.],
        [1., 1., 1., 1., 1., 0., 0., 0.],
        [1., 1., 1., 1., 1., 1., 0., 0.]])
corr2d(X, K)  # 仍可检测到水平边缘
tensor([[ 0., -1.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  0., -1.,  0.,  0.,  0.,  0.],
        [ 1.,  0.,  0., -1.,  0.,  0.,  0.],
        [ 0.,  1.,  0.,  0., -1.,  0.,  0.],
        [ 0.,  0.,  1.,  0.,  0., -1.,  0.],
        [ 0.,  0.,  0.,  1.,  0.,  0., -1.],
        [ 0.,  0.,  0.,  0.,  1.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  1.,  0.]])
corr2d(X.T, K)  # X转置后结果不变
tensor([[ 0., -1.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  0., -1.,  0.,  0.,  0.,  0.],
        [ 1.,  0.,  0., -1.,  0.,  0.,  0.],
        [ 0.,  1.,  0.,  0., -1.,  0.,  0.],
        [ 0.,  0.,  1.,  0.,  0., -1.,  0.],
        [ 0.,  0.,  0.,  1.,  0.,  0., -1.],
        [ 0.,  0.,  0.,  0.,  1.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  1.,  0.]])
corr2d(X, K.T)  # K转置后检测的是水平边界
tensor([[ 0.,  0.,  1.,  0.,  0.,  0.,  0.,  0.],
        [-1.,  0.,  0.,  1.,  0.,  0.,  0.,  0.],
        [ 0., -1.,  0.,  0.,  1.,  0.,  0.,  0.],
        [ 0.,  0., -1.,  0.,  0.,  1.,  0.,  0.],
        [ 0.,  0.,  0., -1.,  0.,  0.,  1.,  0.],
        [ 0.,  0.,  0.,  0., -1.,  0.,  0.,  1.],
        [ 0.,  0.,  0.,  0.,  0., -1.,  0.,  0.]])

(2)在我们创建的 Conv2D 自动求导时,会收到什么错误消息?

?上面没报错哇


(3)如何通过改变输入张量和卷积核张量,将互相关运算表示为矩阵乘法?

没明白,上面实现的就是用矩阵乘法。


(4)手动设计一些卷积核。

a. 二阶导数的核的形式是什么?

b. 积分的核的形式是什么?

c. 得到 d 次导数的最小核的大小时多少?

没看明白

《动手学深度学习 Pytorch版》 6.2 图像卷积

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值