Given a tree (a connected graph with no cycles), you have to find the farthest nodes in the tree. The edges of the tree are weighted and undirected. That means you have to find two nodes in the tree whose distance is maximum amongst all nodes.
Input
Input starts with an integer T (≤ 10), denoting the number of test cases.
Each case starts with an integer n (2 ≤ n ≤ 30000) denoting the total number of nodes in the tree. The nodes are numbered from 0 to n-1. Each of the next n-1 lines will contain three integers u v w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 10000)denoting that node u and v are connected by an edge whose weight is w. You can assume that the input will form a valid tree.
Output
For each case, print the case number and the maximum distance.
Sample Input
2
4
0 1 20
1 2 30
2 3 50
5
0 2 20
2 1 10
0 3 29
0 4 50
Sample Output
Case 1: 100
Case 2: 80
模板题,注意Case 2: 80有两个空格
//树的直径模板
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <algorithm>
#include <climits>
using namespace std;
const int maxn=50000+5;
const int maxm=100000+5;
#define ll long long
//有向边
struct Edge
{
Edge(){}
Edge(int to,ll cost,int next):to(to),cost(cost),next(next){}
int to; //边尾部
ll cost; //边距离
int next; //指向下条边
}edges[maxm*2];
int cnt=0; //边总数
int head[maxn];//头结点
//添加两条有向边
void AddEdge(int u,int v,ll cost)
{
edges[cnt]=Edge(v,cost,head[u]);
head[u]=cnt++;
edges[cnt]=Edge(u,cost,head[v]);
head[v]=cnt++;
}
//距离
ll dist[maxn*2];
//BFS返回从s出发能到达的最远点编号
int BFS(int s)
{
int max_dist=0;
int id=s;
queue<int> Q;
memset(dist,-1,sizeof(dist));
dist[s]=0;
Q.push(s);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
if(dist[u]>max_dist)
max_dist=dist[id=u];
for(int i=head[u]; i!=-1; i=edges[i].next)
{
Edge &e=edges[i];
if(dist[e.to]==-1)
{
dist[e.to]=dist[u]+e.cost;
Q.push(e.to);
}
}
}
return id;
}
int main()
{
int n,m;
int t;
cin>>t;
int kase=0;
while(t--)
{
kase++;
scanf("%d",&n);
cnt=0;
memset(head,-1,sizeof(head));
int u,v;
ll cost;
for(int i=1;i<=n-1;i++)
{
scanf("%d%d%lld",&u,&v,&cost);
u++;v++;
AddEdge(u,v,cost);
}
printf("Case %d:",kase);
printf(" %lld\n",dist[BFS(BFS(u))]);
}
return 0;
}