LightOj1094 Farthest Nodes in a Tree(树的直径:BFS模板)

本文介绍了一种用于寻找树中两点间最大距离的经典算法——树的直径算法。通过两次BFS遍历,首先找到树中最远的节点,再从该节点出发找到树中另一最远节点,从而得出树的直径。文章提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a tree (a connected graph with no cycles), you have to find the farthest nodes in the tree. The edges of the tree are weighted and undirected. That means you have to find two nodes in the tree whose distance is maximum amongst all nodes.

Input

Input starts with an integer T (≤ 10), denoting the number of test cases.

Each case starts with an integer n (2 ≤ n ≤ 30000) denoting the total number of nodes in the tree. The nodes are numbered from 0 to n-1. Each of the next n-1 lines will contain three integers u v w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 10000)denoting that node u and v are connected by an edge whose weight is w. You can assume that the input will form a valid tree.

Output

For each case, print the case number and the maximum distance.

Sample Input

2

4

0 1 20

1 2 30

2 3 50

5

0 2 20

2 1 10

0 3 29

0 4 50

Sample Output

Case 1: 100

Case 2: 80

模板题,注意Case 2: 80有两个空格

//树的直径模板
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <algorithm>
#include <climits>
using namespace std;
const int maxn=50000+5;
const int maxm=100000+5;
#define ll long long
//有向边
struct Edge
{
    Edge(){}
    Edge(int to,ll cost,int next):to(to),cost(cost),next(next){}
    int to;   //边尾部
    ll cost; //边距离
    int next; //指向下条边
}edges[maxm*2];
int cnt=0;    //边总数
int head[maxn];//头结点
 
//添加两条有向边
void AddEdge(int u,int v,ll cost)
{
    edges[cnt]=Edge(v,cost,head[u]);
    head[u]=cnt++;
    edges[cnt]=Edge(u,cost,head[v]);
    head[v]=cnt++;
}
 
//距离
ll dist[maxn*2];
 
//BFS返回从s出发能到达的最远点编号
int BFS(int s)
{
    int max_dist=0;
    int id=s;
    queue<int> Q;
    memset(dist,-1,sizeof(dist));
    dist[s]=0;
    Q.push(s);
 
    while(!Q.empty())
    {
        int u=Q.front();
         Q.pop();
        if(dist[u]>max_dist)
            max_dist=dist[id=u];
        for(int i=head[u]; i!=-1; i=edges[i].next)
        {
            Edge &e=edges[i];
            if(dist[e.to]==-1)
            {
                dist[e.to]=dist[u]+e.cost;
                Q.push(e.to);
            }
        }
    }
    return id;
}
 
int main()
{
    int n,m;
    int t;
    cin>>t;
    int kase=0;
    while(t--)
    {
    	kase++;
    	scanf("%d",&n);
        cnt=0;
        memset(head,-1,sizeof(head));
        
        int u,v;
        ll cost;
        for(int i=1;i<=n-1;i++)
        { 
        	
            scanf("%d%d%lld",&u,&v,&cost);
            u++;v++;
            AddEdge(u,v,cost);
        }
        printf("Case %d:",kase);
        printf(" %lld\n",dist[BFS(BFS(u))]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值