JAVA算法:子集求和问题(Subset Sum Problem)

本文探讨了JAVA中解决子集求和问题(Subset Sum Problem)的方法,通过递归和动态规划算法进行分析。在给定数组{3, 2, 7, 1}和目标值S=6的示例中,展示了两种算法的运行结果,证明存在子数组(3, 2, 1)使得子数组元素之和等于目标值。" 114906223,10753455,"Spring框架中Optional, Map及List依赖注入详解

JAVA算法:子集求和问题(Subset Sum Problem)

题目:给定一个正整数数组,和一个目标值,找出是否存在数组的一个子数组,使得子数组元素之和等于目标值。

例如:给定数组 { 3, 2, 7, 1} 和目标值 S = 6

返回结果: True , 子数组为 (3, 2, 1}

问题分析:

使用递归算法和动态规划算法两种算法来求解上述问题。

递归算法

对于数组中的每个元素有两个选择,我们在子数组中包括该元素和在子数组中不包括该元素。

在给定的例子中:数组 { 3, 2, 7, 1} 和目标值 S = 6

如果我们考虑另一个数组A,它也包括4个元素(数组A和给定的数组具有相同的长度)
如果数组A中包括原数组的元素,则数组A的元素设置为1(对应于原数组元素的下标位置);否则设置为0

这样,我们需要找到每一个可能的子集,并且检查是否子集的元素之和等于目标值。 

package com.bean.algorithm.dp;

public class SubSetSumRecursion {
	public static void find(int[] A, int currSum, int index, int sum, int[] solution) {
		if (currSum == sum) {
			System.out.println("\nSum found");
			for (int i = 0; i < solution.length; i++) {
				if (solution[i] == 1) {
					System.out.print("  " + A[i]);
				}
			}

		} else if (index == A.length) {
			return;
		} else {
			solut
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值