设坐标系1为[X1,Y1,Z1][X_1, Y_1, Z_1][X1,Y1,Z1](X1为列向量X_1为列向量X1为列向量), 通过R,tR, tR,t变到坐标系2[X2,Y2,Z2][X_2, Y_2, Z_2][X2,Y2,Z2], 坐标系1下的坐标为(x1y1z1)\begin{pmatrix} x_{1} \\ y_{1} \\ z_1 \\ \end{pmatrix}x1y1z1, 坐标系2下的坐标为(x2y2z2)\begin{pmatrix} x_{2} \\ y_{2} \\ z_2 \\ \end{pmatrix}x2y2z2,则有关系
[X1,Y1,Z1](x1y1z1)=[X2,Y2,Z2](x2y2z2)[X_1, Y_1, Z_1]\begin{pmatrix} x_{1} \\ y_{1} \\ z_1 \end{pmatrix} = [X_2, Y_2, Z_2]\begin{pmatrix} x_{2} \\ y_{2} \\ z_2 \\ \end{pmatrix}[X1,Y1,Z1]x1y1z1=[X2,Y2,Z2]x2y2z2
其中基变换为[X1,Y1,Z1](Rt0T1)=[X2,Y2,Z2][X_1, Y_1, Z_1] \begin{pmatrix} R& t\\ 0^T&1 \\ \end{pmatrix} = [X_2, Y_2, Z_2][X1,Y1,Z1](R0Tt1)=[X2,Y2,Z2]
基变换为右乘, 因为R,tR, tR,t是在坐标系1下的进行的
基的变换是从左到右, 后面的变换乘在右边, 每乘一个坐标系就变了
坐标的变换是从右到左, 后面的变换乘在左边, 坐标系没变