biharm_factor_system

本文介绍了一个名为biharm_factor_system的函数,该函数用于构造并分解四次调和方程的系统矩阵。输入包括顶点位置、三角形索引、边界条件类型等参数。文章详细解释了不同边界条件下系统的构建过程,并提供了对应的论文引用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

function [L,U,P,Q,R, S, M] = biharm_factor_system( ...
  V, ...
  F, ...
  bndtype, ...
  masstype, ...
  reduction, ...
  Omega, ...
  N0, ...
  N1)
  % [L,U,P,Q,R, S, M] = biharm_factor_system( ...
  %   V, ...
  %   F, ...
  %   bndtype, ...
  %   masstype, ...
  %   reduction, ...
  %   Omega, ...
  %   N0, ...
  %   N1)
  % construct and factor the system for the biharmonic equation
  % Input,
  % V: #vertices x 3  array of domain positions of vertices (used for stiffness matrix weights) 
  % F: #triangles x 3 array of vertex indices forming triangles
  % bndtype:  boundary condition type, ('ext', 'deriv') 
  %   ext means that two rows of x are fixed; deriv means that  1 row of
  %   x is fixed and dx/dn is specified on the same row.
  %   'ext' region conditions (need to fix two rows into exterior)
  %   'deriv' curve conditions (need to fix one row and specify tangents)
  
  % masstype:  type of mass matrix to use ('full', 'barycentric', 'voronoi')
  % reduction: reduce to a single variable x or keep x,y ('flatten','no_flatten')
  %   'flatten' reduce system, only valid for region conditions 
  %             [Botsch and Kobbelt, 2004]
  %   'no_flatten' do NOT reduce system, valid for all boundary conditions
  % Omega: interior of the domain
  % N0: boundary of the domain
  % N1: one layer outside the domain
  %
  % returns: result of lu factorization of system matrix
  % 
  % notation for indices and vectors from Elif Tosun's thesis
  % 
  % system matrix and rhs will be constructed out of pieces of these
  % matrices   
  %the matrices for the extension and derivative boundary conditions 
  % are slightly different in entries with indices in N0  in the case of 
  % derivative conditions, the entries are computed by integration over the domain Omega only
  % for extension conditions 
  %
  % See corresponding paper: "Mixed finite elements for variational surface
  % modeling" by Alec Jacobson, Elif Tosun, Olga Sorkine, and Denis Zorin, SGP
  % 2010
  %
  % Copyright 2010, Alec Jacobson, NYU
  %

  interest = [Omega N0 N1 ];
  % Don't both with faces outside of region of interest
  F = F( ...
    ismember(F(:,1),interest) & ...
    ismember(F(:,2),interest) & ...
    ismember(F(:,3),interest),:)';  
 % F的三个索引都要在insterest的范围内

  all = [N0 Omega];

  % Build cotangent and mass matrices
  if strcmp(bndtype,'deriv')
    interior_faces = F(:, ismember(F(1,:),all) & ...
                            ismember(F(2,:),all) & ...
                            ismember(F(3,:),all)); 
    S =  cotmatrix(V, interior_faces);  
    M = massmatrix(V, interior_faces, masstype);
    % 如果为deriv就不需要算那么多了,只需要算[N0 Omega]部分
  else % bndtype == 'ext'
    S = cotmatrix(V, F);  
    M = massmatrix(V, F, masstype);
  end

  if strcmp(reduction,'flatten')
    % system matrix for the system with x as variable only
    % obtained by eliminating y = M^{-1} (S_{all,Omega} - rhs_Dx)
    % Reduce system to only solve for u (eliminate auxillary variables by inverting
    % the diagonal mass matrix) 
    % 论文中通过消掉V_Omega_bar来实现,即这里使用公式11
    A = S(Omega,all) * (M(all,all) \ S(all,Omega)); 
  else % full matrix
    % system matrix for x,y variables
    n_Omega = size(Omega,2);
    Z_Omega_Omega = sparse(n_Omega, n_Omega);
    A = [ -M(all,all)      S(  all,Omega);   ...
           S(Omega,all)    Z_Omega_Omega  ];     
    %这里使用公式10   
  end

  % factorize A
  [L,U,P,Q,R] = lu(A);
  %[L,U,P,Q,R] = lu(A) returns unit lower triangular matrix L, upper 
  %triangular matrix U, permutation matrices P and Q, and a diagonal 
  %scaling matrix R so that P*(R\A)*Q = L*U for sparse non-empty A. 
  %Typically, but not always, the row-scaling leads to a sparser and more 
  %stable factorization. The statement lu(A,'matrix') returns identical 
  %output values.
end




内容概要:本文档详细介绍了基于Simscape的弹簧隔振系统建模与优化设计的大作业。作业背景在于机械工程领域的振动控制技术,尤其是弹簧隔振系统在汽车悬架和精密仪器隔振等方面的应用。文档的任务包括使用Simscape Multibody建立包含质量块、弹簧、阻尼器和基础激励源的物理模型,并添加传感器测量质量块的位移、速度和加速度。参数设定部分明确了质量块质量、弹簧刚度、阻尼系数、激励幅值和激励频率的初始值范围。动态分析涵盖了自由振动分析、简谐激励响应和传递率分析,具体包括计算固有频率、测量振动衰减周期、记录稳态响应振幅、绘制幅频特性曲线以及分析不同阻尼比对传递率的影响。最后,参数优化的目标是在5-15Hz频段内使传递率小于0.2,优化变量为弹簧刚度和阻尼系数,并使用合适的优化函数进行约束优化。 适合人群:机械工程专业学生或从事振动控制相关工作的技术人员。 使用场景及目标:①学习如何使用MATLAB/Simscape建立物理模型并进行仿真分析;②掌握振动系统的动态特性分析方法;③理解并应用参数优化方法提高隔振效果。 阅读建议:此文档不仅涉及理论分析,还包含详细的建模步骤和优化方法,因此在学习过程中应结合实际操作,按照文档提供的模型和脚本进行实践,同时参考文献资料加深对隔振器发展与作用的理解。
标题SpringBoot基于微信小程序的垃圾分类信息系统研究AI更换标题第1章引言介绍研究的背景、意义、国内外在垃圾分类信息系统方面的研究现状以及论文的研究方法和创新点。1.1研究背景与垃圾分类的重要性分析当前垃圾分类的现状和问题,以及微信小程序在垃圾分类中的潜在应用。1.2国内外研究现状及发展趋势概述国内外在垃圾分类信息系统方面的研究进展和未来发展趋势。1.3研究目的与创新点明确本研究的目的,并阐述论文在垃圾分类信息系统方面的创新之处。第2章相关理论基础介绍SpringBoot框架、微信小程序以及垃圾分类相关的理论基础。2.1SpringBoot框架概述简述SpringBoot框架的特点、优势及其在开发中的应用。2.2微信小程序技术阐述微信小程序的基本原理、开发流程和功能特点。2.3垃圾分类理论与技术介绍垃圾分类的基本概念、分类方法以及相关的技术手段。第3章系统设计与实现详细阐述基于SpringBoot和微信小程序的垃圾分类信息系统的设计方案和实现过程。3.1系统架构设计给出系统的整体架构,包括前端、后端和数据库的设计。3.2系统功能模块设计详细介绍系统的各个功能模块,如用户管理、垃圾分类识别、数据统计等。3.3系统实现与测试阐述系统的具体实现过程,包括开发环境、关键代码实现以及系统测试等。第4章系统应用与性能分析对实现的垃圾分类信息系统进行实际应用和性能分析。4.1系统应用案例介绍系统在实际场景中的应用情况,如小区、学校等场所的垃圾分类管理。4.2系统性能测试与分析对系统的性能进行测试和分析,包括响应时间、准确性等指标。第5章结论与展望总结论文的研究成果,指出研究的不足之处,并对未来的研究方向进行展望。5.1研究结论概括论文的主要研究结论和创新点,评价系统在垃圾分类中的应用效果。5.2研究展望分析当前研究的局限性,提出未来可能的研究方向和改进措施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值