Same卷积
来自:AlexNet网络(2012年提出)
原文链接:https://blog.csdn.net/seasonsyy/article/details/132640381
图像的尺寸不发生改变,而提取的特征却在增多。
Same卷积:
本质上仍是一种普通卷积,计算公式仍然是
output=[(input−filterSize+2∗padding)/stride]+1
output=[(input-filterSize+2*padding)/stride]+1
output=[(input−filterSize+2∗padding)/stride]+1
好处:没有在卷积之后缩小图像尺寸,也没有放过原图像中任何一个信息进行卷积,所以提取出的特征图会更加完整。
启发:当构建属于自己的网络的卷积神经网络的时候,在合适的时候采取Same卷积方法,可能会带来很好的性能,且代码十分简单,只需要按照Same卷积的要求设置响应的参数即可。
# 利用nn包构建采用Same卷积的卷积层
self.conv1=nn.Sequential(
nn.Conv2d
(
in_channels=1,
out_channels=6,
kernel_size=3,
stride=1, # 步长一定要设置为1
padding=1 # padding设置成1就实现了加边界
),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2)
)
参考文献:
《Python神经网络 入门与实践》 王凯 编著
出版社:北京大学出版社
ISBN: 9787301316290