yolov8训练CDLA数据文版版面分析

本文介绍了CDLACDLA中文文档版面分析数据集,涉及数据集结构、json转txt预处理步骤,并展示了如何使用ultralytics的yolov8模型进行训练和测试,包括模型加载、训练配置和图像检测应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.数据集介绍

CDlA数据集介绍:CDLA
CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label:在这里插入图片描述
数据量:
共包含5000张训练集和1000张验证集,分别在train和val目录下。每张图片对应一个同名的标注文件(.json)。
数据展示:在这里插入图片描述
标注工具是labelme,所以标注格式和labelme格式一致。
数据结构:在这里插入图片描述
train和val里面分别存放图片及标注结果json文件
在这里插入图片描述

二. 数据预处理

将json文件转换成txt文件

import json 
import os 
import argparse
from tqdm import tqdm
import glob
import cv2 
import numpy as np
 
def convert_label_json(json_dir,save_dir,classes):
    files=os.listdir(json_dir)
    #删选出json文件
    jsonFiles=[]
    for file in files:
        if os.path.splitext(file)[1]==".json":
            jsonFiles.append(file)
    #获取类型        
    classes=classes.split(',')
    
    #获取json对应中对应元素
    for json_path in tqdm(jsonFiles):
        path=os.path.join(json_dir,json_path)
        with open(path,'r') as loadFile:
            print(loadFile)
            json_dict
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值