deepseek+RAGFLOW本地部署

1. Ollama本地安装Deepseek R1 模型

1.1 安装ollama

Ollama官网:https://ollama.com/

打开官网,然后点击下载,之后安装到本地。

在这里插入图片描述

1.2 安装deepseek

打开Ollama 的模型列表,搜索到DeepSeek R1https://ollama.com/library/deepseek-r1

在这里插入图片描述

安装1.5B,7B就可以使用(根据自身电脑硬件安装,我本地安装的是14b),然后在上图中【右上角的的代码】复制在命令行中运行。【ollama run deepseek-r1:14b】

ollama run deepseek-r1:14b

在这里插入图片描述

【注意】:这里安装需要等待一段时间。

然后输入:

ollama list

查看安装的模型的信息。如下所示:

在这里插入图片描述

2. 配置环境变量并运行deepseek

2.1 配置环境变量

打开电脑设置-系统-关于,点击【高级系统设置】
在这里插入图片描述

2.2 运行deepseek

在这里插入图片描述

3. 下载ragflow

访问地址:https://github.com/infiniflow/ragflow,点击下载即可
在这里插入图片描述

下载完成后,解压到文件夹中,修改 docker/.env 文件内的 RAGFLOW_IMAGE 变量。
在这里插入图片描述
在这里插入图片描述

4. 安装docker

【注意】

  • 操作系统:Windows 10 64-bit或Windows 11。
  • 硬件:支持虚拟化技术的处理器和至少 4 GB 的内存。
  • 虚拟化:确保 BIOS 中已启用虚拟化技术。

如何查看是否开启了虚拟化技术:打开任务管理器,点击性能
在这里插入图片描述
如果没有开启虚拟化技术,在BIOS中开启虚拟化技术:首先开机进入BIOS,选择configuration按回车键进入。进行后选择Secure Virtual Machine Mode。按回车键进入后选择Enabled开启,然后再按回车键确认。按F10保存,在弹出的对话框中选择OK,按回车键确认,电脑重启,设置完毕。

4.1 Hyper-V

如果已经开启虚拟化技术,就按照如下步骤:

  • 在程序和功能的窗口的左上角选择启用或关闭windows功能勾选Hyper-V和适用于linux的windows子系统和虚拟机平台,点击确认,之后他会让你重启这样准备工作就完成了;

在这里插入图片描述

  • 如果没有Hyper-V的话,将下面命令复制到文本文档中,并将文档重命名Hyper.cmd;
 pushd "%~dp0"
 dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mum  >hyper-v.txt
 for /f %%i in ('findstr /i . hyper-v.txt 2^>nul') do dism  /online /norestart  /add-package:"%SystemRoot%\servicing\Packages\%%i"
 del hyper-v.txt
 Dism /online /enable-feature /featurename:Microsoft-Hyper-V-All  /LimitAccess /ALL
  • 等待脚本执行,输入Y,进行电脑重启之后,查看控制面板-程序-启用或关闭Windows功能,可以看下Hyper-v节点已存在,然后勾选上即可。

4.2 安装WSL

查看自己的电脑是否安装了wsl,快捷键win+r,输入cmd,按enter键,输入命令:

wsl -l

如果没有安装好的话,就打开powershell并输入:

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart

检查WSL2的要求:win+R打开运行,然后输入winver检查windows版本
在这里插入图片描述

查看Linux版本,此版本需要大于1903
在这里插入图片描述

启用虚拟化:以管理员打开powershell输入下列命令;

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart

设置WSL默认版本:

wsl --set-default-version 2

4.3 安装docker

访问 Docker 官网:(https://www.docker.com/products/docker-desktop/)选择适用于 Windows 的版本进行下载。
在这里插入图片描述

进入cmd,输如下列命令查看docker版本信息。

docker version

在这里插入图片描述
打开docker软件,点击设置,点击docker引擎,配置下载镜像:

{
  "builder": {
    "gc": {
      "defaultKeepStorage": "20GB",
      "enabled": true
    }
  },
  "experimental": false,
  "features": {
    "buildkit": true
  },
  "registry-mirrors": [
    "https://docker.m.daocloud.io",
    "https://docker.1panel.live",
    "https://registry.docker-cn.com",
    "https://cr.console.aliyun.com",
    "https://mirror.ccs.tencentyun.com"
  ]
}

在这里插入图片描述

最后点击【apply & restart】按钮。

在cmd中,运行一个简单的 Docker 容器,验证安装是否成功:

docker run hello-world

进入到前面下载完成的ragflow-main文件夹下,在上面这个路径输入cmd。
在这里插入图片描述

输入命令:

docker compose -f docker/docker-compose.yml up -d

等待镜像包下载完成,此过程比较慢,需耐心等待。

下载完成之后,再输入命令:

docker logs -f ragflow-server

在这里插入图片描述

出现上述图片中第四个红框的内容提示说明服务器启动成功。

5. 使用ragflow创建知识库

第一步:打开浏览器,输入http://localhost:80,进行注册。注册完成后登录即可。
在这里插入图片描述

第二步:登录成功后,点击右上角的头像,然后点击模型提供商。
在这里插入图片描述

第三步:然后选择ollama,点击添加模型,根据图中输入每个框中的内容,然后点击确定。
在这里插入图片描述

【注意】基础Url通过下属方法查找,打开cmd,输入ipconfig,回车查看自己的ipv4地址,用自己的ipv4地址替换掉图中马赛克的位置即可。

第四步:再次点击系统模型设置,然后点击确定。
在这里插入图片描述

第五步:然后点击知识库,创建知识库,给知识库命名,最后点击确定。
在这里插入图片描述

第六步:进入配置,文档语言设置为中文,滑到最下面点击保存。
在这里插入图片描述

第七步:点击数据集,新增文件,上传文件构建自己的知识库。
在这里插入图片描述

第八步:上传完成之后,等待文件解析成功,才可以构建聊天。
在这里插入图片描述

第九步:最点击聊天,构建自己的聊天助理即可。
在这里插入图片描述

### 如何在本地环境中部署 DeepSeekRAGFlow #### 准备工作 为了成功安装并运行 DeepSeekRAGFlow 框架,需先确认环境满足最低硬件和软件要求。建议的操作系统为 Linux 发行版,因为大多数命令行工具和服务都在此平台上得到了优化和支持。 #### 部署步骤详解 ##### 下载项目源码 访问 GitHub 上的官方仓库获取最新版本的代码: ```bash git clone https://github.com/infiniflow/ragflow.git cd ragflow/ ``` ##### 设置虚拟环境与依赖项 创建一个新的 Python 虚拟环境来隔离项目的依赖关系,并激活该环境: ```bash python3 -m venv env source env/bin/activate pip install --upgrade pip pip install -r requirements.txt ``` ##### 启动服务端口监听 通过执行特定脚本启动 Ollama 服务器组件,这是整个架构中的核心部分之一[^1]: ```bash ollama serve ``` ##### 构建个性化知识库 按照文档指导完成自定义数据集导入以及索引建立过程,确保能够高效检索所需信息[^3]。 ##### 使用 Docker 简化流程 对于希望进一步简化操作的技术新手来说,可以考虑利用容器化解决方案——Docker 来自动化大部分设置工作。只需拉取预构建镜像即可迅速搭建起完整的开发测试平台[^4]。 #### 测试验证 当所有组件均已正确配置完毕之后,可以通过浏览器或其他 HTTP 客户端向 API 接口发送请求来进行功能性和性能方面的初步检验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值