1. Ollama本地安装Deepseek R1 模型
1.1 安装ollama
Ollama官网:https://ollama.com/
打开官网,然后点击下载,之后安装到本地。
1.2 安装deepseek
打开Ollama 的模型列表,搜索到DeepSeek R1https://ollama.com/library/deepseek-r1
安装1.5B,7B就可以使用(根据自身电脑硬件安装,我本地安装的是14b),然后在上图中【右上角的的代码】复制在命令行中运行。【ollama run deepseek-r1:14b】
ollama run deepseek-r1:14b
【注意】:这里安装需要等待一段时间。
然后输入:
ollama list
查看安装的模型的信息。如下所示:
2. 配置环境变量并运行deepseek
2.1 配置环境变量
打开电脑设置-系统-关于,点击【高级系统设置】
2.2 运行deepseek
3. 下载ragflow
访问地址:https://github.com/infiniflow/ragflow,点击下载即可
下载完成后,解压到文件夹中,修改 docker/.env 文件内的 RAGFLOW_IMAGE 变量。
4. 安装docker
【注意】
- 操作系统:Windows 10 64-bit或Windows 11。
- 硬件:支持虚拟化技术的处理器和至少 4 GB 的内存。
- 虚拟化:确保 BIOS 中已启用虚拟化技术。
如何查看是否开启了虚拟化技术:打开任务管理器,点击性能
如果没有开启虚拟化技术,在BIOS中开启虚拟化技术:首先开机进入BIOS,选择configuration按回车键进入。进行后选择Secure Virtual Machine Mode。按回车键进入后选择Enabled开启,然后再按回车键确认。按F10保存,在弹出的对话框中选择OK,按回车键确认,电脑重启,设置完毕。
4.1 Hyper-V
如果已经开启虚拟化技术,就按照如下步骤:
- 在程序和功能的窗口的左上角选择启用或关闭windows功能勾选Hyper-V和适用于linux的windows子系统和虚拟机平台,点击确认,之后他会让你重启这样准备工作就完成了;
- 如果没有Hyper-V的话,将下面命令复制到文本文档中,并将文档重命名Hyper.cmd;
pushd "%~dp0"
dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mum >hyper-v.txt
for /f %%i in ('findstr /i . hyper-v.txt 2^>nul') do dism /online /norestart /add-package:"%SystemRoot%\servicing\Packages\%%i"
del hyper-v.txt
Dism /online /enable-feature /featurename:Microsoft-Hyper-V-All /LimitAccess /ALL
- 等待脚本执行,输入Y,进行电脑重启之后,查看控制面板-程序-启用或关闭Windows功能,可以看下Hyper-v节点已存在,然后勾选上即可。
4.2 安装WSL
查看自己的电脑是否安装了wsl,快捷键win+r,输入cmd,按enter键,输入命令:
wsl -l
如果没有安装好的话,就打开powershell并输入:
dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart
检查WSL2的要求:win+R打开运行,然后输入winver检查windows版本
查看Linux版本,此版本需要大于1903
启用虚拟化:以管理员打开powershell输入下列命令;
dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart
设置WSL默认版本:
wsl --set-default-version 2
4.3 安装docker
访问 Docker 官网:(https://www.docker.com/products/docker-desktop/)选择适用于 Windows 的版本进行下载。
进入cmd,输如下列命令查看docker版本信息。
docker version
打开docker软件,点击设置,点击docker引擎,配置下载镜像:
{
"builder": {
"gc": {
"defaultKeepStorage": "20GB",
"enabled": true
}
},
"experimental": false,
"features": {
"buildkit": true
},
"registry-mirrors": [
"https://docker.m.daocloud.io",
"https://docker.1panel.live",
"https://registry.docker-cn.com",
"https://cr.console.aliyun.com",
"https://mirror.ccs.tencentyun.com"
]
}
最后点击【apply & restart】按钮。
在cmd中,运行一个简单的 Docker 容器,验证安装是否成功:
docker run hello-world
进入到前面下载完成的ragflow-main文件夹下,在上面这个路径输入cmd。
输入命令:
docker compose -f docker/docker-compose.yml up -d
等待镜像包下载完成,此过程比较慢,需耐心等待。
下载完成之后,再输入命令:
docker logs -f ragflow-server
出现上述图片中第四个红框的内容提示说明服务器启动成功。
5. 使用ragflow创建知识库
第一步:打开浏览器,输入http://localhost:80,进行注册。注册完成后登录即可。
第二步:登录成功后,点击右上角的头像,然后点击模型提供商。
第三步:然后选择ollama,点击添加模型,根据图中输入每个框中的内容,然后点击确定。
【注意】基础Url通过下属方法查找,打开cmd,输入ipconfig,回车查看自己的ipv4地址,用自己的ipv4地址替换掉图中马赛克的位置即可。
第四步:再次点击系统模型设置,然后点击确定。
第五步:然后点击知识库,创建知识库,给知识库命名,最后点击确定。
第六步:进入配置,文档语言设置为中文,滑到最下面点击保存。
第七步:点击数据集,新增文件,上传文件构建自己的知识库。
第八步:上传完成之后,等待文件解析成功,才可以构建聊天。
第九步:最点击聊天,构建自己的聊天助理即可。