《Python数据可视化之Matplotlib与Pyecharts》之主题河流图

本文通过使用Python的Pyecharts库,展示了如何从Hadoop数据库中读取销售数据,并生成不同类型商品销售额的主题河流图,以直观地分析企业2019年10月各类型商品的销售趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

11.7.2  不同类型商品销售情况分析

为了分析该企业不同类型商品的销售额情况,绘制了不同商品销售额的主题河流图,Python代码如下:

# -*- coding: utf-8 -*-

# -*- coding: utf-8 -*-

#声明Notebook类型,必须在引入pyecharts.charts等模块前声明

from pyecharts.globals import CurrentConfig, NotebookType

CurrentConfig.NOTEBOOK_TYPE = NotebookType.JUPYTER_LAB

from pyecharts import options as opts

from pyecharts.charts import Page, ThemeRiver

from impala.dbapi import connect

#连接Hadoop数据库

conn = connect(host='192.168.1.7', port=10000, database='sales',auth_mechanism='NOSASL',user='root')

cursor = conn.cursor()

#读取Hadoop表数据

sql_num = "SELECT order_date,ROUND(SUM(sales),2),category FROM orders WHERE order_date>='2019-10-01' and order_date<='2019-10-31' GROUP BY category,order_date"

cursor.execute(sql_num)

sh = cursor.fetchall()

v1 = []

v2 = []

for s in sh:

  v1.append([s[0],s[1],s[2]])

#画主题河流图

def themeriver() -> ThemeRiver:

    c = (

        ThemeRiver()

        .add(

            ["办公用品","家具","技术"],

            v1,

            singleaxis_opts=opts.SingleAxisOpts(type_="time", pos_bottom="10%"),

        )

        .set_global_opts(title_opts=opts.TitleOpts(title="不同类型商品销售额比较分析", subtitle="2019年企业经营状况"),

                         toolbox_opts=opts.ToolboxOpts(),

                         legend_opts=opts.LegendOpts(is_show=True)

                        )

    )

    return c

#第一次渲染时候调用load_javasrcript文件

themeriver().load_javascript()

#展示数据可视化图表

themeriver().render_notebook()

在Jupyter lab中运行上述代码,生成如图11-7所示的主题河流图。

图11-7  主题河流图

pyecharts提供了主题河流(ThemeRiver),它是堆积面积的一种变形。主题河流通过"流动"的形状来展示不同类别的数据随时间的变化情况。堆积面积不同的是,河流将数据分散到一个变化的中心基准线上,而不是固定的、笔直的轴上(如堆积的基准线就是x轴)。 需要注意的是,pyecharts还提供了其他类型的表,如日历,漏斗,仪表盘,水球,关系,平行坐标系,饼,极坐标系,桑基,词云等。如果需要更加详细的绘信息,建议参考pyecharts官网。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [echarts和pyecharts主题河流-两种风格对比](https://blog.csdn.net/sabian2/article/details/122630828)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [pyecharts丨将主题的演变嵌入时间长河中——主题河流](https://blog.csdn.net/qq_39496504/article/details/107110718)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [python Pyecharts的基本绘](https://download.csdn.net/download/qq_52691614/85109523)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王国平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值