PyTorch深度学习实战(4)—— Tensor的基本操作

58 篇文章 ¥19.90 ¥99.00
  PyTorch背后的设计核心是张量和计算图,张量实现了高性能的数据结构和运算,计算图通过计算梯度以优化网络参数。本文将介绍PyTorch的张量系统(Tensor)和自动微分系统(autograd)。

Tensor,又名张量,读者可能对这个名词似曾相识,它不仅在PyTorch中出现过,而且也是其他深度学习框架(如TensorFlow、MXNet等)中重要的数据结构。从工程角度讲,可以简单地认为Tensor是一个支持高效科学计算的数组。Tensor可以是一个数(标量)、一维数组(向量)、二维数组(如矩阵、黑白图片)或者更高维的数组(如高阶数据、视频等)。Tensor与NumPy的ndarray用法类似,而PyTorch的Tensor支持GPU加速。

本文将系统地讲解Tensor的基本用法,力求面面俱到,但不会涉及每个函数。对于Tensor的其他函数及其用法,读者可在IPython/Notebook中使用函数名加?查看帮助文档,或查阅PyTorch的官方文档。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shangjg3

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值