深度学习论文: SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers及其PyTorch实现
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
PDF: https://arxiv.org/pdf/2105.15203.pdf
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks
1 概述
SegFormer使用一种分层特征表示的方法,每个transformer层的输出特征尺寸逐层递减,通过这种方式捕获不同尺度的特征信息。并且舍弃了ViT中的position embedding操作,避免了测试图像与训练图像尺寸不同而导致模型性能下降的问题。在decoder部分采用简单的MLP结构,聚合transformer层不同尺度的特征,可以同时融合局部注意力和全局注意力。