【YOLOv8改进-注意力机制】Polarized Self-Attention: 极化自注意力 ,更精细的双重注意力建模结构

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLOv8基础解析+创新改进+实战案例

在这里插入图片描述

介绍

image-20240402215343138

摘要

像素级回归可能是细粒度计算机视觉任务中最常见的问题,例如估计关键点热图和分割掩模。这些回归问题非常具有挑战性,特别是因为它们需要在低计算开销下对高分辨率输入/输出建模长距离依赖关系,以估计高度非线性的像素级语义。

### 如何在YOLOv8中添加自注意力机制 #### 添加 Polarized Self-Attention (PSA) 为了提升YOLOv8的目标检测性能,在`PolarizedSelfAttention.py`文件里加入Polarized Self-Attention(PSA)代码[^2]。该模块融合了空间和通道两个维度的信息处理能力,相较于其他单一维度的注意力机制有着好的表现。 具体来说,PSA通过设计Channel-only分支和Spatial-only分支来分别捕捉特征图上的通道依赖性和位置关系,最终将两者结合起来形成丰富的表征形式[^3]。 以下是Python代码片段用于定义Polarized Self-Attention层: ```python import torch.nn as nn import torch class ChannelOnlyBranch(nn.Module): """Channel-only branch of PSA.""" def __init__(self, in_channels, reduction_ratio=16): super(ChannelOnlyBranch, self).__init__() hidden_channels = int(in_channels / reduction_ratio) self.fc = nn.Sequential( nn.Linear(in_channels, hidden_channels), nn.ReLU(inplace=True), nn.Linear(hidden_channels, in_channels), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.fc(x.mean(dim=(2, 3)).view(b, c)) return x * y.view(b, c, 1, 1) class SpatialOnlyBranch(nn.Module): """Spatial-only branch of PSA.""" def __init__(self): super(SpatialOnlyBranch, self).__init__() self.conv = nn.Conv2d(2, 1, kernel_size=7, padding=3, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) scale = self.sigmoid(self.conv(torch.cat([avg_out, max_out], dim=1))) return x * scale class PolarizedSelfAttention(nn.Module): def __init__(self, channel): super(PolarizedSelfAttention, self).__init__() self.channel_branch = ChannelOnlyBranch(channel) self.spatial_branch = SpatialOnlyBranch() def forward(self, x): chan_att_x = self.channel_branch(x) spa_att_x = self.spatial_branch(chan_att_x) return spa_att_x ``` 完成上述类定义之后,需修改YOLOv8网络结构配置文件(通常是`.yaml`),以便在网络特定层次上插入此新组件。通常建议将其放置于骨干网结束处或是颈部部分之前的位置,从而让整个模型受益于增强后的特征表达力。 最后一步是在训练过程中加载并应用这些改动过的架构设置,确保所有必要的库已正确安装以及环境变量已被适当调整以支持新的特性实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值