YOLOv11目标检测创新改进与实战案例专栏
文章目录: YOLOv11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLOv11目标检测创新改进与实战案例
文章目录
介绍
摘要
当前表现最好的目标检测器依赖于深度卷积神经网络(CNN)骨干,例如ResNet-101和Inception,得益于其强大的特征表示能力,但却面临高计算成本。相反,一些轻量级模型的检测器可以实现实时处理,但其准确性常常受到批评。本文
文章目录: YOLOv11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLOv11目标检测创新改进与实战案例
当前表现最好的目标检测器依赖于深度卷积神经网络(CNN)骨干,例如ResNet-101和Inception,得益于其强大的特征表示能力,但却面临高计算成本。相反,一些轻量级模型的检测器可以实现实时处理,但其准确性常常受到批评。本文