【YOLOv11改进 - 注意力机制】HCF-Net 之 PPA:并行化注意力设计 | 小目标

YOLOv11目标检测创新改进与实战案例专栏

文章目录: YOLOv11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv11目标检测创新改进与实战案例

在这里插入图片描述

介绍

image-20240701160512143

摘要

摘要——红外小目标检测是计算机视觉中的一项重要任务,涉及识别和定位红外图像中的微小目标,这些目标通常只有几个像素。然而,由于目标体积小且红外图像背景通常复杂,这项任务面临诸多挑战。本文提出了一种深度学习方法HCF-Net,通过多个

### 分块注意力PPA)的实现机制 分块注意力(Parallel Patch Attention, PPA)是一种基于注意力机制设计,旨在通过并行处理多个非重叠的图像块(Patches),有效提取局部和全局特征[^1]。以下是关于其核心概念和技术细节的具体说明: #### 1. 并行分块注意力机制 PPA设计灵感来源于 HCF-Net 模型中的多尺度特征融合技术[^4]。它通过对输入特征图进行划分,形成若干个非重叠的 patches,并针对这些 patches 计算注意力矩阵。这种机制允许模块在不同的空间位置上捕捉到更丰富的上下文信息。 #### 2. 局部与全局特征交互 PPA 模块的核心在于通过调整 **patch 大小参数 \( p \)** 来平衡局部和全局特征的提取能力。具体来说: - 当 \( p \) 较小时,模块倾向于关注细粒度的局部特征; - 当 \( p \) 较大时,则更多地聚焦于全局结构信息。 此外,PPA 还采用了 **空间维度上的聚合和位移操作**,进一步增强了跨 patch 的信息传递效率。 #### 3. 注意力矩阵计算 为了高效地融合不同尺度的信息,PPA 利用了非重叠 patches 间的注意力矩阵计算方法。这种方法不仅减少了冗余计算量,还显著提升了模型对于复杂场景中小目标检测的能力[^2]。 #### 4. 特征融合策略 PPA 结合了 **层次化特征融合 (Hierarchical Feature Fusion)** 和 **多分支特征提取 (Multi-Branch Feature Extraction)** 技术。前者确保了低级特征向高级特征的有效传播,而后者则提供了多样化的感受野支持,共同促进了小目标表示的学习效果。 --- ### Python 实现代码示例 以下是一个简单的 PPA 模块实现框架,假设已导入必要的依赖库 `torch` 及其他组件: ```python import torch import torch.nn as nn class ParallelPatchAttention(nn.Module): def __init__(self, channels, num_heads=8, patch_size=7): super(ParallelPatchAttention, self).__init__() self.patch_size = patch_size self.num_heads = num_heads # 定义线性变换层用于QKV投影 self.qkv_proj = nn.Linear(channels, 3 * channels) self.attn_out = nn.Linear(channels, channels) def forward(self, x): B, C, H, W = x.shape assert H % self.patch_size == 0 and W % self.patch_size == 0, \ f"Input dimensions must be divisible by {self.patch_size}" # 将特征图划分为patches patches = x.unfold(2, self.patch_size, self.patch_size).unfold(3, self.patch_size, self.patch_size) patches = patches.contiguous().view(B, C, -1, self.patch_size*self.patch_size).permute(0, 2, 1, 3) # QKV投影 qkv = self.qkv_proj(patches.permute(0, 1, 3, 2)).chunk(3, dim=-1) q, k, v = map(lambda t: t.reshape(B, -1, self.num_heads, C // self.num_heads), qkv) # 注意力计算 attn_weights = torch.matmul(q.transpose(-2, -1), k) / (C // self.num_heads)**0.5 attn_probs = torch.softmax(attn_weights, dim=-1) out = torch.matmul(v, attn_probs.transpose(-2, -1)) out = out.permute(0, 2, 1, 3).reshape(B, -1, C) # 输出映射回原始尺寸 output = self.attn_out(out.permute(0, 2, 1)).view(B, C, H, W) return output ``` 上述代码实现了基本的 PPA 功能,其中包含了以下几个关键部分: - 输入特征图被分割成固定大小的 patches; - 使用自注意力机制完成局部区域内的特征加权; - 最终将结果重新组合为完整的特征图形式。 如果希望将其集成至现有项目中,可以参考 Ultralytics 提供的标准接口定义方式[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值