【YOLOv11改进 - 注意力机制】Focused Linear Attention :全新的聚焦线性注意力模块

YOLOv11目标检测创新改进与实战案例专栏

文章目录: YOLOv11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv11目标检测创新改进与实战案例

在这里插入图片描述

介绍

摘要

自注意力的二次计算复杂性在将Transformer模型应用于视觉任务时一直是一个持久的挑战。相比之下,线性注意力通过精心设计的映射函数来近似Softmax操作,提供了更高效的替代方案,其计算复杂性为线性。然而,目前的线性注意力方法要么遭受显著的性能下降,要么因映射函数引入了额外的计算开销。在本文中,我们提出了一种新颖的聚焦线性注意力模块,以实现高效率和高表现力。具体来说,我们首先从聚焦能力和特征多样性两个角度分析了线性注意力性能下降的因素。为克服这些限制,我们引入了一个简单但有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值