YOLOv11目标检测创新改进与实战案例专栏
文章目录: YOLOv11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLOv11目标检测创新改进与实战案例
文章目录
介绍
摘要
在医学图像分割中,一种高效且有效的解码机制至关重要,尤其是在计算资源有限的场景下。然而,这些解码机制通常伴随着较高的计算成本。为解决这一问题,我们提出了EMCAD——一种新型高效多尺度卷积注意力解码器,旨在同时优化性能和计算效率。
文章目录: YOLOv11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLOv11目标检测创新改进与实战案例
在医学图像分割中,一种高效且有效的解码机制至关重要,尤其是在计算资源有限的场景下。然而,这些解码机制通常伴随着较高的计算成本。为解决这一问题,我们提出了EMCAD——一种新型高效多尺度卷积注意力解码器,旨在同时优化性能和计算效率。